LEARNING FROM EXAMPLES VS. PROGRAMMING BY DEMONSTRATION
Is INTERACTION THE KEY TO (BETTER) APPLICATIONS?

Lake Tahoe, USA, July 9** 1995
Workshop at the Twelfth International Conference on Machine Learning

PROCEEDINGS

Workshop Program Committee:

S. Bocionek (Munich, Germany)
R. Dillmann (Karlsruhe, Germany)
A. Giordana (Turin, Italy)

Y. Kuniyoshi (Tsukuba, Japan)
D. Maulsby (Cambridge, USA)

Proceedings Editor:
H. Friedrich (Karlsruhe, Germany)



41

MONOTONE BOOLEAN FUNCTION LEARNING TECHNIQUES
INTEGRATED WITH USER INTERACTION '

BORIS KOVALERCHUK', EVANGELOS TRIANTAPHYLLOU" AND
EUGENE VITYAEV™

* Department of Industrial Engineering, 3128 CEBA Building, Louisiana State University,

Baton Rouge, IA 70803-6409, USA. E-mail: borisk@unixl.sncc.lsu.eduy,
ietrian@|suvm.sncc.lsu.edu

" Institute of Mathematics, Russian Academy of Science, Novosibirsk, 630090, Russia.

Abstract. This paper discusses some key issues about an interactive machine learning approach
based on the theory of monotone Boolean functions. We present some key problems and the main
steps of some algorithms for solving them. The concept of Shannon functions is used as a criterion
Jor algorithmic optimality. The proposed approach allows for the possibility to decrease the number
of positive and negative examples needed to infer a monotone Boolean function, and thus can make
this type of machine learning systems more applicable.

Key Words. Learning from Examples, Monotone Boolean Functions, Shannon Function.

1. INTRODUCTION

The general approach of pure machine learning and
inductive inference includes the following two steps: (1)
obtaining in advance a sufficient number of examples
(vectors) for different classes of observations, and (2)
formulation of the assumptions about the required
mathematical structure of the example population (see,
for instance, (Bongard, 1966), (Vityaev, 1975),
(Zagoruiko, 1979), and (Vityaev and Moskvitin,
1993)). Human interaction is used just when we obtain
examples and formulate the assumptions. In this paper
we deal with monotone Boolean functions and we
consider an extension of human interaction for the
discrimination stage (i.e., when a monotone Boolean
function is constructed from the examples). The
general problem of learning a Boolean function has
many applications. Such applications can be found in
the areas of medical diagnosis, hardware diagnosis,
astrophysics, finance as it is best demonstrated by the
plethora of databases in the Machine Learning

1

The first two authors gratefully acknowledge the
support from the Office of Naval Research (ONR)
grant N00014-95-1-0639.

Repository in the University of California, at Irvine
(Murphy and Aha, 1994).

The traditional machine learning approach has some
difficulties, in particular for monotone Boolean
functions. The size of the hypothesis space is influential
in determining the sample complexity of a learning
algorithm. That is, the number of examples needed to
accurately approximate a target concept. The presence
of bias in the selection of a hypothesis from the
hypothesis space can be beneficial in reducing the
sample complexity of a learning algorithm (Mitchell,
1980), (Natarajan, 1989) and (Goldman and
Sloan,1992).  Usually the amount of bias in the
hypothesis space H is measured in terms of the
Vapnik-Chervonenkis dimension, denoted as VCdim(H)
(Vapnik, 1982) and (Haussler, 1988). Theoretical
results regarding the VCdim(H) are well knmown
(Vapnik, 1982). The results in (Vapnik, 1982) are still
better than some other bounds given in (Blumer, 1989).

However, all these bounds are still overestimates
(Haussler and Warmuth, 1993).

Before learning is carried out we do not know if the



42 Bors Kovalerchuk, Evangelos Triantaphyllon and Eugene Vityacn

given examples are sufficient or surplus for successful
learning. Often, the collected examples are less or more
than the ones really needed. If we obtain inappropriate
results after learning, we should try to add some
examples and/or reject some of them as noise with the
belp of user interaction. Therefore, the real process of
machine learning is an interactive process but it is not
a formalized process yet. Interaction is not an element
of the procedures for automated pure machine learning.
Currently, user interaction is mostly considered as a
requirement for user friendly software than the feature
of machine learning algorithms (MLA).

In this paper we show that user interaction should be a
point of improvement of MLA. Usual ML algorithms
and software do not give any guidance on how to
generate additional examples with user interaction.

Moreover, often a generation of examples is very
expensive and requires lots of time. Therefore,
generation of surplus examples should be avoided and
interactive ML algorithms, with the property of
minimizing the number of required examples, should be
developed (Schapire, 1992) and (Kearns et al.,1987).

Usually, interactive practice relies on some pragmatic
assumptions, application of specific heuristics and very
few examples. This approach has limitations on their
adaptability. The purpose of this paper is to offer a
more general approach to:

1) continually use human interaction for
example generation;
2) construction of intuitively acceptable
decision rules;

and  3) construction of concepts from examples.

The proposed approach is developed for Boolean
vectors (positive and negative examples) and a
sufficient general assumption of "compactness of a
pattern”. 'We will show that the above assumption can
be represented with a mathematical formalism of
monotone Boolean functions. These functions have
attracted attention in machine learning and regression
analysis (see, for instance, (Boros et al., 1993), and
(Kovalerchuk and Lavkov, 1984)). This happened
because of their simplicity, the well developed

mathematical theory and the clear interpretation they

offer to many applications. Each discrimination (i.e.,
general Boolean function) can be described in terms of
several monotone Boolean functions (see also the
theorem in section 2). A small number of monotone
functions allows for a simpler discrimination and
"compactness of patterns”. Next, we describe the
approach for the simplest case of inferring a single
monotone Boolean function.

2. SOME BASIC DEFINITIONS AND
.. RESULTS ABOUT MONOTONE BOOLEAN
FUNCTIONS

Let E, denote the set of all binary vectors of length n.
Let « and B be two such vectors. Then, the vector «
= (a,x,,a5,..,a,) precedes the vector f =
(B,,B2,B,-...B,) (denoted as: « < B) if and only if the
following is true: a; < B, forall 1 < i < n.If, at the
same time: « » B, then it is said that « strictly precedes
@ (denoted as: « < B). The two binary vectors « and
@ are said to be comparable if one of the relationships
e < Borax P holds.

A Boolean function f{x) is monotope if for any vectors
a,BeE,, the relation f(a) < f{P) follows from the fact
that « < 3. Let M, be the set of all monotone Boolean
functions defined on n variables. A binary vector a of
length n is said to be the upper zero of a function
Rla)eM,, if {a) =0 and, for any vector 8 such that B <
a, we have f{B) =0. Also, we shall call the number of
unities (i.e., the 1" elements) in vector « as its Jeve}
and denote this by U( ). '

Examples of monotone Boolean functions are: the
constants O and 1, the identity function f{x) = x, the
disjunction x, V x,, the conjunction x, A x,, etc. Any
function obtained by a composition of monotone
Boolean functions is itself monotone. In other words,
the class of all monotone Boolean functions is ¢losed.
Moreover, the class of all monotone Boolean functions
is one of the five maximal (pre-complete) classes in
the set of all Boolean functions. That is, there is no
closed class of Boolean - functions, containing all
monotone Boolean functions and distinct from the class
of monotone functions and the class of all Boolean
functions. The reduced disjunctive pnormal form
(DNF) of any monotone Boolean function, distinct of
O and 1, does not contain negations of variables. The
set of functions {0, 1, (x; V ), (x; A )} is a complete
system (and moreover, a basis) in the class of all
monotone Boolean functions (Alekseev, 1988).

For the pumber ¥(n) ofmgng_qngﬂg_als_n_f_n_tx_ni
depending on n variables, it is known that:

¥ {n) = z(lnjzj)(l' g(n))

where 0 < g(n) < c(logn)/n and ¢ is a constant (see, for
instance, (Kleitman, 1969), and (Alekseev, 1988)).

Let a monotone Boolean function fbe defined with the
help of a certain operator A, (also called an oracle)



Monotone Boolean Function Learning Techniques Integrated with [ser Interaction

43

which when fed with a vector a = (a,a,a;,...,a,),
yields the value of flae). The problem posed here is
that of finding all upper zeros of an arbitrary function
JeM, with the help of a certain number of accesses to
the operator A, Let & = (F} be the set of all
algorithros which can soive the above problem and @(F,
J) be the number of accesses to the operator A, required
to solve a given problem about inferring a monotone
function feM,.

Next, we introduce the Shannon function ¢(n) as
follows (Korobkov, 1965):

®(n) = min max @(F, f). 1)
Fed  feM,

The problem examined next is that of finding all upper
zeros of an arbitrary function feM, with the help of a
certain number of accesses to the operator A, It is
shown in (Hansel, 1966), that in the case of this
problem the following relation is true (also known as
Hansel's lemma):

n n 2
olm) =\ a/21)° lans21-1 @

Here | n/2 ] is the closest integer number to n/2 which is
no more than n/2. In terms of machine learning the set
of all upper zeros represents the border elements of the
negative pattern. In an analogous manner we can also
introduce the concept of lower units to represent the
border of a positive pattern. In this since each monotone
Boolean function represents "compact patterns”.

A binary vector « of length n is said to be the Jower
unjt of a function f{a)eM,, if fa) = 1 and, for any
vector B from E, such that § < «, we get Af) = 1. We
. will also call the above defined monotone Boolean
function to be an jncreasing (isotone) monotone
Boolean function in contrast with a decreasing
monotone Boolean function. A Boolean function is
asi tit tone, if for any vectors
«,fek,, the relation ) < P) follows from the fact
that a = § (Rudeanu, 1974, p.149).

THEOREM: Each general discrimination
(i.e., a general Boolean function) can be
described in terms of several monotone
Boolean functions.

Proof:

It is well known that any Boolean function can be
presented by its DNF. Also, each conjunction from a
DNF representation can be presented by a pair of
monotone Boolean functions. One of them is an
increasing and the other one is a decreasing function.

Letx, A.AX A X, A.A X, be a conjunction from the
DNF representation of a given Boolean function, where
for simplicity the first { components (atoms) are
positive while the next k- components are negations.
Then, we can form the Boolean functions

8(xy, .. x) =X, AN X
and

Ay X)) =K A\ Xy

The function g is an increasing monotone Boolean
function and the function A is a decreasing monotone
Boolean function (Rudeanu, 1974). Hence, the
copjunction x; A.Ax A X, NN X, is equal to the
conjunction of functions g and A:

g(x,, ...x,) Nh(x,, ....x,).

Therefore, any arbitrary Boolean function g can be
presented in the form:

q(x) - j\_/l( g;(x) Ary(x) ) @)
where: x = (x,, ...,x,) and m is an integer number. M

Next, let us consider the case in which g(x) = g(x) A
h(x). Here: g = g"nh*, where: g* = (x: g(x)=1},
g ={x g(x)=1}, and h* = {x: h(x)=1}. Therefore, one
can obtain the set of all positive examples for q as the
intersection of the sets of all positive examples for the
monotone functions g and A.

For a general function ¢(x), represented as in (3), the
union of all these intersections gives the full set of
positive examples: ¢* = vg;=u (g*;n 4%). Often, we
do not need so many separate monotone functions.
The union of all conjunctions, which do not include
negations X, forms a single increasing monotone
Boolean function (see, for instance, (Yablonskii, 1986)
and (Alekseev, 1988)).

3. SOME KEY PROBLEMS
AND ALGORITHMS

In this section we present some key problems and the
main steps of algorithms for solving them.



44 Boris Kovalerchuk, Evangelos Triantaphyllon and Eugene Vityaen

PROBLEM 1.

iti H .

There are no initial examples to initiate learning. All
examples should be obtained as a result of the
interaction of the designer with an oracle (i.e., an
operator A). It is also required that the discriminant
function should be a monotone Boolean function.
This problem is equivalent to the requirement that we
consider just two compact monotone patterns. These
conditions are natural for many applications. Such
applications include the estimation of reliability ( see
also the illustrative example later in this section for
problem 4).

Algorithm Al:

Step 1: The user is asked to confirm function
monotony.

Step 2: Apply an iterative algorithm for generating
examples and construction of the DNF
representation. Do so by using Hansel's
lemma (see also (Hansel, 1966) and
(Gorbunov and Kovalerchuk, 1982)). This
algorithm is optimal according to (1) and (2)).

PROBLEM 2.

! Qndi;jgns.

There are no initial examples to initiate learning. There
is a given binary vector (example) to be classified by
the oracle A. Thus, we should learn to correctly
classify a specific vector. However, now the direct
interactive classification of a given example by A, is
associated with some kind of ¢osf. Alternatively, the
user may have an estimate of the probability {a) = 1.
Also, the discriminant function should be a monotone
Boolean function.

The basic idea of the proposed algorithm is follows. Let
us suppose that vector «, (which should be classified)
has the cost of classification C, as determined by an
oracle. We also suppose that we have at least two other
significantly cheaper vectors, say «. and «., with costs
C.., and C,*, respectively (where: C, >> C,., and C,
>> C,*). These vectors should also satisfy the property:
a.x o % a (ie, « is between them) and {x.) =fla’)
according to the oracle. Therefore, due to monotony,
f{«) has the same value. In this way we can obtain the
value of f{la) by exploiting monotony and a pair of low
cost examples.

Algorithm AZ:
Step 1: The user is asked to confirm function
monotony.

Step 2: Estimation of the “cost” of any example which
. is considered by the user,
Step 3: Ordering the examples according to their

"cost” values.
Step 4: Apply a cost related iterative
algorithm for the generated
exarmples.

Next, we present step 4 in more detail:

Step 4.1: Generate cheap examples which
cover @ (i.e., a.< a < a),

Step 4.2: Find examples «. and o  with the
same answer of the oracle (i.e., fla.)
=fle?)).

PROBLEM 3.

Conditions:

There are some initial examples for learning. We
should learn to classify an arbitrary vector as a result of
the interaction of the designer with an oracle (i.e., an
operator Ay). Also, the discriminant function should be
a monotone Boolean function.

Algorithm A3:

Step 1: The user is asked to confirm function

monotony.

Step 2: Test for monotony of the initial examples and
reject- the examples which violate the
monaotony property.

Step 3: Restoration of known elements of Hansel's
chains (use: (Hansel, 1966), (Gorbunov,
Kovalerchuk, 1982)).

Step 4: Apply a modified iterative algorithm for
additional examples generation based on
Hansel's lemma.

PROBLEM 4.

Conditions:

We should learn to classify an arbitrary vector as a
result of the interaction of the designer with an oracle
(i.e., an operator A). The discriminant functions
should be monotone Boolean functions. There are some
initial examples for learning for the connected
classification problems simultaneously, with monotony
supposition for both of them and the supposition that
the positive patterns are nested. '

Formally, the above consideration means that for all
ok, the following relation is true: fya) 2 f(a)
(where f,(a) and f,(«) are the discriminant monotone



Boolean functions for the first and the second problems,
respectively). The last situation is more compiex than
the previous one. However, the use of additional
information from both problems allows for the potential
to accelerale the rate of learning.

\n E le_of Nested Probl (A_Reliabili
Example)

Let E7, and £, be the sets of positive and negative
examples for the first problem and E™,, E—,, be the sets
of positive and negative examples for the second
problem, respectively.

We consider the problem of classification of the states
of some system. A qualified expert, working with the
system for a long term can serve as an “oracle” (i.e., an
operatar Ag). States of the system are represented by
binary vectars from E,. The "oracle” can answer
questions such as: “Is reliability .of a given state
guaranteed?” (Yes/No) or: “Is an accident for a given
state guaranteed?” (Yes/No). In accordance with
these questions, we pose classification tasks: the first
one for question 1 and the second task for question 2.

Task 1;
Pattern 1: "Guaranteed reliable states of the
system” (E*,).
Pattern 2: "Reliability of the states of the
System is not guaranteed” (E=)).
Task 2:
Pattern 1: “States of the system with some
possibility for normal operation”
(ED.
Pattern 2: "States of . the system which

" guaranteed an accident” (E—,).

In the above situation the following relations should be
true: £, 5 E7y and fy(a) > fi(«) for all ek, describing
the system state, where fi(«) and fi{«) are discriminant
monaotone Boolean functions for the first and second
tasks, respectively.

Step 1: The user is asked to confirm the
monotony for both tasks (ie., the
functions underlying their patterns).

Step 2: Testing of monotony of the initial
examples for both tasks.

Step 3: Rejection of examples violating monatony.

Step 4: Restoration of f{e) values for elements of

Hansel's chains, using monotony property and
koown examples (Hansel, 1966) and
(Gorbunov and Kovalerchuk, 1982).

Step 5: Apply a dual iterative algorithm for additional

examples generation based on Hansel's
lemma.

Next, we discuss step 3 in more detail:
Step 5.1: Generale the next vector a;, for
interaction with A,.

Generate the next vector «,; for
interaction with A,

Estimation of the numbers of vectors
(M) for which we can compute
fila) and f{a) without asking
oracles A, and A, by temporarily
assuming that f{«;)) = | (for j = 1,2).
Estimation of the numbers of vectors
(N*?) for which we can compute
file) and fi(«) without asking
oracles A, and A,; by temporarily
assuming that fi{«y) =0 (for j = 1,2).
Estimation of the numbers of vectors
() for which we can compute
file) and fi(a)’ without asking
oracles A, and A, by temporarily
dssuming tt\atjj(au) =1 (forj=12).
Estimation of the numbers of vectors
(N*) for which we can compute
file) and f{a) without asking
oracles A; and A, by temporarily
assuming that f{a,) =0 (for j = 1,2).
Choose thé variant with thé maximal
pumber of vectors from steps 5.3-5.6
to prefer «, or «, for asking the
corresponding oracle.

Step 5.2:

Step 5.3:

Step 5.4:

Step 5.5:

Step 5.6:

Step 5.7:

Comment:

In step 5.7 we realize a local algorithm. This means
that we consider just suppositions about f{e;) and
J{a:z). We do not simultaneously consider further
SuppOSIU.OHS about f(anl.l) f( aH-l_Z) f(“»u)zf(“nu)
etc. for the next possible results of interaction. - This
development of the algorithm can decrease the number
of interactions, but leads to more computations.

4. BOOLEAN MACHINE LEARNING
"UNDER NOISE

PROBLEM DESCRIPTION »

In this section we consider the case of noise in the data.
There are many alternative formulations of the noise
issue. In this paper we assume that a single example
(i.e., binary vector) can be classified by both functions
£(x) (i.e., the noise function) and f,(x) (i.e., the target or
"hidden” function). However, the analyst (user) does
not have access to the values produced by the hidden



46 Boris Kovalerchuk, Evangelos Triantaphyllou and Eugene Vityaen

function f,(x). That is, for a new example, say a, the
user can retrieve the values f,(a), and f(a) = f,(a#f,(a).
In the last relation f (a) is the composite value and “#”
is a logical operator, which can be either assumed
known or also to become subject of the investigation.

Therefore, the main problem is how to find the function
f,(x) and the nature of the logical operator “#”, given
information on the outputs of the functions f(x) and
f(x). From the above comsiderations it becomes
apparent that the behavior of the target function f,(x) is
obscured by the interaction with the second function
f,(x), and thus the function f(x) is called the poise
function. For simplicity, in the following paragraphs
we will assume that the logical operator "#” is the
conjunction operator (i.e., &).

Next we present the highlights of some related
algorithms which deal with noise. Algorithm NS1
assumes independent input to functions £(x) and £,(x).
Algorithm NS2 assumes that the same input is fed to
both functions. Algorithms NS3, and NS4 deal with
partially defined noise functions. Most of our
algorithms deal with deterministic cases. For a
stochastic setting the reader may want to consult with
the work in (Schapire, 1992). Finally, algorithms NS5
and NS6 deal with cases in which there is probabilistic
behavior of the noise function. A more detailed
description of the main steps of these algorithms is
given in below.

Algorithm NS1 (Parallel restoration of functions).
Step 1: Interactive restoration of the function £ (x).
Step 2: Interactive restoration of the function f,(x).
Step 3: Computational restoration of the function
f,(x) on the base of: f(x) = f,(x)&L.(x), i.e.,

£ = L&), where
f.(x) indicates the negation of

function £,(x).

Algorithm NS2 (Connected restoration of functions).
Step 1: Generation of the vector a for the
oracles A, and A,.

Step 2: Obtaining f(a) from the oracle A_.
Step 3: Obtaining f,(a) from the oracle A

Step 4: Computational restoration of the
. value fy(a) on the base of f(a) and

f.(a), ie., f(@)=f(D)&(T,(a)).

Step S: Generation of the nmext vector a
according to the Hansel lemma.

Step 6: Return to the steps 14 with each
new vector until f(x) will be
restored.

Algorithm NS3J (Parallel restoration of functions with

. partiaily known an oracle for noise A,).
- Step 1: Interactive restoration of the function

£(x)
Step 2: Interactive restoration of the function £(x) as
a partially known function.

Step 3: Computational restoration of the
function f,(x) on the base of
f.(x)=f, (x)&f, (x), i.e.,

L(x)&(f(x))=f,(x) as a partially
known function.

Step 4: Construction of the functions f.(x)<
£ (x)<£," (x) such that if £(x) is not
known for A, then f.(x)=0 and
£ '(x)=1.

Step 5: Construction of the functions £(x)&( If..(x))

and f(x)&(f,(x)) as lower and upper
estimates for f,(x).

Finally, observe that the less knowledge oracle A, has,
the lesser are the possibilities to avoid noise.

Algorithm NS4 (Connected restoration of functions
with partially known the oracle A,).

This algorithm is a combination of algorithms NS2 and
NS3).

Algorithm NSS (Parallel restoration of functions with

partially known an oracle for noise A, with probability

distribution P,(x) of £,(x) for some x).

Step 1: Interactive restoration of the function £(x)

Step 2: Interactive restoration of the function £,(x) as
a partially known function.

Step 3: Computational restoration of the function f(x)
on the base of [(xX)=f(x)&f (x). ie,
£ ()&(E,(x))=f(x) as a partially kmnown

: function. .
Step 4: Construction of functions £.(x) <
f(x)<£,(x) such that if £(x) is not
known for A, then f.(x)}=0 and

£ (x)=1.
Step 5: Construction of the functions £,(x)&(

To-(x)) and £(x)&( 15 (x)) as lower
and upper estimates for f,(x).
Step 6: Obtaining probabilistic  estimates
B.(x) and B'(x) for the borders
£(0&( Tu(x)) 2nd E(&CE, (X)),
respectively.
Step 7: Choose of a preferred border:
If B.{x) > B(x), then f, is
estimated as £(x)&(If,.(x));
If B.(x) < B'(x), then f, is
estimated as £.(x)&(IE, (x)).

Algorithm NS6 (Connected restoration of functions



Monotone Boolean Function Learning Techniques Integrated with User Interaction

47

with partially known an oracle for noise A, with
probability distribution P,(x) of £,{(x) for some x. This
algorithm is a combination of algorithms NS3 and NS5.

5. CONCLUDING REMARKS

Some computational experiments (see, for instance,
(Gorbunov and Kovalerchuk, 1982) and
(Triantaphyllou and Soyster, 1995)) have shown that it
is possible to significantly decrease the mumber of
questions for an oracle in comparison with the full
number of questions (which is equal to 2*) and also in
comparison with guaranteed pessimistic estimation
(formula (2) in section 2) for many functions from
applications. Some close form results were also
obtained for a connected problem of retrieval of
maximal upper zero (Kovalerchuk and Lavkaov, 1984).
These results show that an interactive approach, based
on monotone Boolean functions, has the potential to be
very beneficial to interactive machine learning.

6. REFERENCES

1. Alekseev, V.B. (1988), "Monotone Boolean
Functions”. Encyclopedia of Mathematics, v.
6, Kluwer Academic Publishers, 306-307.

2. Blumer A. Ehrenfeucht A. Haussler D. and
Warmuth M X. (1989) Learnability and the
Vapnik- Chervonenkzs dimension,

As mputin
Machinery, 36 (4), 929 965.

3. Bongard, M. (1967), Pattern Recognition,
Moscow, "Nauka” Publ. (in Russian, English
translation, 1970, by Spartakos Press, NY).

4, Boros E., Hammer, P., and Hooker, 1. (1993),
“Predicting cause-effect relationships from
Incomplete Discrete Observations”, Rutgers
center for operations research, RUTCOR

research report RRR  9-93, Rutgers
University, USA.
5. Goldman and Sloan R.H.(1992) The Power of

Self-Directed Learning, Machine Learning,
Vol. 14, 271-294.,

6. Gorbunov, Yu, and Kovalerchuk, B, (1982),
"An Interactive Method of Monotone Boolean
Function Restoration”, Joumal of Academy of
Science of UzSSR, Engineering, v. 2, 3-6 (in

. Russian).
7. Hansel, G. (1966), "Sur le nombre des
Jonctions Boolenes monotones den variables”.
CR. Acad, Sci, Pars, v. 262, n. 20,
1088-1090.
8. Haussler D. (1988) Quantifying inductive

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21. .

bias: Al learning algorithms and Valiant's
learning framework, Artificial Intelligence,
36, 177-221.

Haussler D. and Warmuth M. (1993) The
Probably Approximately Correct (PAC) and
Other Learning Models. Chapter in:.
Foundati f Kpowled A cquisition:
Machine L.eaming, AL. Meyrowitz and S.
Chipman (Eds), Kluwer Academic Publishers,
Norwell, MA, 291-312,

Kearns M., Li M., Pitt L., Valiant L. (1987)
On the learnability of Boolean formulae. In
P i f the i ] | ACM
symposium on theorv of computing, 285-295.
Kleitman, D. (1969), "On Dedekind's
problem: the number of monotone Boolean
Sunctions”. Proc, Amer. Math., Soc. 21,
677-682.

Korobkov V. K. (1965) On monotone Booleun
Junctions of algebra logic, In Problemv
Cybernetiki , v.13, "Nauka" Publ., Mascow,
5-28 (in Russian).

Kovalerchuk, B., and Lavkov, V. (1984),
"Retrieval of the maximum upper zero for
minimizing the number of attributes in
regression analysis”. TJSSR Computational

Mathematics and Mathematical Physics, v. 24,
n. 4, 170-175.

Mitchell T.(1980), The need for biases in
learning generalizations, Technical Report
CBM-TR-117, Rutgers University, New
Brunswick, NJ.

Murphy PM. and Aha D.W.(1994) UCI
repository of machine learning databases.
Machine-readable data repository, Irvine,
CA,University of California, Department of
Information and Computer Science.
Natarajan B.X. (1989), On learning sets and
Junctions, Machine Leamning, 4(1), 123-133.
Rudeanu, S., (1974), "Boolean functions and
equations”, North-Holland, NY.
Triantaphylou, E(1994), “Inference of a
minimum size Boolean function examples by
using a new efficient branch-and-bound
approach”. Joumal of Global Optimization,
v. 5, 1. 1, 69-94.

Schapire R. (1992) The design and analysis of
efficient learning algorithms. MIT Press.
Shawe-Taylor J. Antony M.and Biggs
N.(1989), Bounding sample size with the
Vapnik-Chervonenkis dimension, Technical
Report CSD-TR-618, University of London,
Surrey, England.

Trantaphyllou, E. and Soyster, A. (1995),
"An approach to guided learning of Boolean



22.

23.

24,

25.

26.

48

functions”, to appear in: Mathematical and
Computer Modeling

Vapnik VN. (1982) Estimating of
Dependencies Based on Empirical Data,
Springer-Verlag, New York, NY.

Vityaev, E. (1975), "An Algorithm of
Inductive Inference”, Computational Systems

- (Vychislitel'nye _sistemy), Instimate of

Mathematics, USSR Academy of Science,
Novosibirsk, n. 61, 28-36 (in Russian).
Vityaev, E., and Moskvitin, A.(1993),
"Introduction to discovery theory”. Program
system: DISCOVERY, Logical Methods in
Informatics, ~ Computational _ Systems
(Vychislitel'nve  sistemy), Instimte of
Mathematics, Russian Academy of Science,
Novosibirsk, n. 148, 117-163 (in Russian).
Yablonskii, S. (1986), "Introduction to
discrete mathematics”, Moscow, "Nauka”
Publ. (in Russian)..

Zagoruiko, N. (1979), “Empirical Forecast”,
"Nauka"” Publ., Novosibirsk (in Russian).

Boris Kovalerchuk, Evangelos Triantaphyllor and Eugene Vityacw



