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Abstract: This paper addresses a problem of assigning electric power repair crews and depots to various
locations (cells) in a damaged area during emergency situations such as natural disasters. The problem takes
into account the damage levels and consequent demand for various resources at different cells in the area,
along with the capacity restrictions of the depots. Two mixed integer quadratic programming models—one for
single resource and another for multiple resources allocation are presented in the paper. The objective is to
locate the depots, and assigning the crews and other resources to depots to various cells, at a minimum cost.
The problem is solved optimally for various dimensions of the problem (e.g., number of cells in the region,
number of depots considered and the number of resources) for a limited instance.

Key Words: Power restoration, routing, allocation of resources, and mixed integer programming problem.

1. INTRODUCTION

The problem of assigning electric power repair depots to various locations in a damaged area assumes critical
importance during emergency situations such as natural disasters. This paper addresses this issue taking into
account the damage levels and the consequent demand for various resources among different cells in the area,
along with capacity limitations of the depots. While considerable amount of literature exists in the area of
location research, it may be mentioned that the issue of simultaneous location of depots with varied capacities,
and their assignments to customers with different demands has not been addressed. For the purpose of power
restoration, a region may be divided into a number of cells. Each cell is affected by the disaster differently, and
the damage levels may be assessed to ascertain the amount of resources required for power restoration in the
cell. In a similar vein, the available depots may also differ in terms of their capacities with respect to various
resources. The problem, then, is to determine the location of the available depots and also, to ascertain the
amount of resource transported from different depots to various cells, so as to minimize the total transportation
cost. It is implicitly assumed that this objective also enables restoration of power in minimal time. Two mixed
integer quadratic programming models for the cases of single and multiple resources are presented (Batta and
Mannur 1990, and Beasley 1993). An illustrative example is provided for a case with multiple resources.

2. RESOURCE ALLOCATION MODELS

As mentioned earlier, the demand arising at various cells is dependent on the level of damage, which may be
different for each cell. This, coupled with the fact that all the depots may not be identical in terms of their
capacities, leads to the formulation of the depot allocation problem as a mixed integer quadratic programming
problem. Mathematical models of the depot allocation and resource transport problem are developed here. First
we present a mixed integer quadratic programming model, considering a single resource requirement. Second,
a mixed integer quadratic programming model is developed for the case of multiple resources (Eaton et al.

1985, and Toregas and Revelle 1992). Before proceeding with the model development, the notation followed
may be presented as follows: ’
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Notation:
i: anindex for the depot (i = /, 2, ..., N).
J: an index for the resource type = 1, 2, ..., m).
k: source cell (k = 1, 2, ..., n).
h: targetcellh =1, 2, .., n).
¢; = Transportation cost (c for single ) per unit of resource J per unit distance.
Ci = Capacity, in terms of the resource availability, of depot i.
Gy = Capacity of depot i in terms of availability of resource J.
D;, = Number of units of resource j demanded at cell A.
X = Number of units of the resource ; transported from depot i to cell A.
Y =1, if depot i is located in cell &, and 0 otherwise.
4w, = Distance between cells k and & (based on the given inter-cell distance matrix).

2.1 Single resource

First, one of the constraints considered for the problem is the demand requirement for each cell. In other words,
the total number of units of resource supplied by different depots to a given cell h, given by Yx;, should be
equal to the cell demand, Dy, Second, the capacity of a depot limits the maximum number of units of resource
transported from it to any cell. Third, each depot may be located at only one cell, and further, each cell may
contain at the most one depot. For computing the transportation cost from cell k to cell A, one has to consider
the amount of resource transported from cell & to cell #. We know that the number of units supplied by depot
to cell 4 is x5 These units will, in fact, be transported from cell & to cell A, if the depot i is located at cell k.
Hence, mathematically, the number of units transported from cell k to cell & may be expressed by the quantity
(*nya ) because y equals 1 if the depot i is located at cell k. If the distance between the cells k and A is 4, , and
transportation cost per unit resource per unit distance is ¢, the cost of transporting xayx from cell k to cell A
would be given by (cAwxayi ). Thus, the depot allocation model may now be stated as a mixed-integer
quadratic programming problem as follows:

.. N n n
Minimize Z = Zi:l Zk=1 Zh:l CA X0V 03}
i N

Subjectto ) " X, = Dy, forh=1,2, .., (1a)
x4 SC, fori=12.,Nandh=12 ..,n (1b)
Do Ve =1, fori=12..N (1)

N .

Do Ya S1, fork=1,2, .. n (1d)
xx20, yue= {01}, fori=12 . ,Nandk=12,..n (le)

This formulation allows for differences in the capacity (resource availability) of the depots, and also enables
assessment of damage in a particular cell in terms of the demand for the resource. While a single type of
resource is considered here, the above model can easily be extended to take into account different types of
resources, say, workers, materials, etc., which is dealt with in the following section.

2.2 Multiple resources

In the previous model, a single type of resource is considered in modeling the power restoration system. While
this may be useful in some situations often multiple resources may be required for the repair of cells. Besides,
different depots could have different capacities with respect to the different types of resource. These factors are
considered in the model presented here. The number of units of resource J transported from cell k to cell & is
given by (x;;, ya ), since xjn units supplied by depot i to cell h will be transported from cell %, if the depot i is
located at cell k. Now, the cost of transportation for this is given by (¢j dwxipyx ). The constraints for this
problem are similar to those for the single resource case, albeit, with a modification considering the different
resources in the demand and capacity constraints. The depot allocation problem for the case of multiple
resource types may now be formulated as a mixed integer-quadratic programming model as follows:
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L] n L N
Minimize Z= Z;:l ¢, Zhl Zm.Akth Xy Vit @
Subject to equations (1¢), (1d) and
N .
X = Dp for j=l...m; and h=1,...n. (2a)
x;, <C;, fori=1 ., N;j=1.,mandh=1, ., n (2b)
Xn 20, yu=¢01} fori=12 .. ,N;j=l..mandk=12 .., n (2c)

3. SOLUTION TO AN INSTANCE

The above model will be illustrated with the use of an example. For this purpose, three types of resources are
considered, namely, workers, equipment type I, and equipment type II. Further, two depots are assumed to be
available with their resource capacities as given in Table 1. The affected region is hypothetically divided into
five cells. The cells, numbered 1 through S, have the resource demand as given in Table 2. It may be mentioned
here that the demand arising from a cell for different resource types is to be based on its assessed damage level.

The transport cost per unit of resource transported per unit distance is given in Table 3. The inter-cell distance
matrix is given in Table 4.

Input Data:
Table 1: Available capacity (in units) of the depots.
Depot Capacity
Personnel Equipment [ Equipment IT
A 8 4 -
B 9 7 13
Table 2: Cell-wise demand (in respective units) for the resources.
Cell Demand
Personnel Equipment I Equipment II
1 4 7 9
2 8 4 3
3 9 5 7
4 5 2 5
5 2 8 8
Table 3: Transportation Cost (dollars/unit/mile).
Resource Cost
Personnel 10
Equipment I 4
Equipment II 6
Table 4: Inter-cell Distance Matrix (in miles)
Cell Distance
i\j 1 2 -3 4 5
1 0 5 2 3 8
2 5 0 6 4 7
3 2 6 0 1 9
4 3 4 1 0 10
5 8 7 9 10 0
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Output Data:

The MIP model has been solved with these data using the GAMS software package. The minimum cost
achieved is $1,268. The solution output has two components: the depot location (Table 5), and the units of
resource transported from each depot to different cells for each of the resource types (Tablie 6).

Table 5: Depot Location.

Depot Cell
A 2
B 3

Table 6(a): Number of Personnel Transported.

Cell
Depot
1 2 3 4 5
A - 8 - - 2
B 4 - 9 5
Table 6(b): Number of Units of Equipment I Transported.
Depot Cell
1 2 3 4 5
A - 4 - - 4
B 7 - 5 2 4
Table 6(c): Number of Units of Equipment II Transported.
Depot Cell
1 2 3 4 5
B 9 3 7 5 8
4. CONCLUDING REMARKS

Both models presented in this paper necessitate assessment of demand arising out of different cells for various
types of resources based on the damage occurred in each cell. The example merely presents a sample solution to
illustrate the models. Thus, the solution is limited to a small instance of the problem, and solutions to large
problem instance will be obviously prohibitive due to its computational intractability. So a heuristic may be
devised for an alternative approach to solve problems with large dimensions (i.¢, number of depots considered,
the number of types of resource required, and the number of cells in the affected region).
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