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ABSTRACT

The purpose of this paper is to develop a depot location
model to manage the resources needed for the power
restoration efficiently and economically in an area
affected by a disaster. The problem adds new depot(s)
to an area where some depots already exist. This
decision-making trades off whether or not it is
necessary to establish new depots. A mathematical
mode] for both cases are developed on an incremental
basis as the problems become complex and new
scenarios become apparent in capturing the more
general aspect of the problem. An optimal solution
strategy is presented following each problem. The
results show that the optimal model can be used in
power restoration management.
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1. INTRODUCTION

The depot location problem addressed in this research
arises from restoration of electric power after a disaster.
For example, on August 26, 1992, hurricane ‘Andrew’
struck Louisiana and caused considerable loss of life
and property. It knocked out power, blew down trees,
closed highways and bridges and created general havoc
throughout the region. Many power failures were the
result of trees being toppled onto overhead power lines.
In many areas, power could not be restored for more
than 2 weeks. Industries, businesses, schools, and other
facilities were closed. The disaster also caused indirect
losses from taxes and revenue lost due to the delay in
power restoration. The primary need after that hurricane
was to restore electricity as early as possible.
Unfortunately, the power utility companies lacked the
resources to deal with such a sudden need for a large
number of emergency repair crews and vehicles. As a
result, they requested help to facilitate the restoration
process. Major power companies sent in extra crews
from other states and other areas in Louisiana.
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Therefore, the main problem of the power companies
was to manage these arriving resources in an efficient
and economic way so as to restore normalcy. An
efficient way to do this was to set up or locate the
depots in the area first, and then prepare for restoration.
Each depot was equipped with the necessary repair
equipment, vehicles, crews, and other resources. Thus,
in this logistic problem, determining optimal number of
depots, optimal locations of depots, and optimal
number of repair crews and/or vehicles are of
significance to the efficient restoration of operations.
The objective of this research is to present a depot
location model for whether or not to add additional
depot(s) to restore power after a disaster.

ADDING NEW DEPOTS TO AN AREA

In this model, the depots may be different from each
other, that is, the types of the resource and the amount
of each type of resources at each depot may be
different. The model constitutes a major difference
from the classical location models in that the model
considers different depots, multiple resources, no
limitation of cell for depot location, and no limitation
in the amount of the resources transported from
different depots to various cells, simultaneously. This
problem considers the condition that, in a restoration
area where some depots are already located, after a
disaster, an emergency area is formed. The model
answers the questions: Does it need additional depot(s)
in the emergency area? how many? and where?

NEW DEPOT MODEL AND SOLUTION
In this section, a depot location model is developed for
general power restoration situations with emergency
area identified as a separate area  is described. The
notation used in the models is:



Notation:

X Quantity of resource k (k=1, 2,..., m) shipped
from depoti (i = I,...,n) tocellj (j = 1,...,N);

A Capacity matrix for depot i and resource k;

Puy  Amount of resources k transported from depot
ilocated atcell A to cellj;

Dy Demand of cell j for resource &;

C; Unit transportation cost of resource k;

dy Distance between cells i and j;

&y Binary (0, I) integer variables. It equals one if

depot i is located at cell j or zero, otherwise.

Here an emergency area is identified after a disaster,
where some depots are already located. To restore the
power in this area (the whole area, including the
affected and non-affected areas), the problem is
whether or not it is necessary to locate new depot(s). If
so, how many depots are to be allocated and where to
locate them? The decisions can be made by comparing
the total cost of the cases before and after adding. Two
cases of restoration in this emergency area are studied
here. The first one is the resource assigning problem
which does not add any depot and demand, although
changed, is still satisfied by the pre-existing depots. The
second one is the problem that adds new depots. The
models and solutions of them are described below.

Adding new depot(s)

Let H be the holding cost of existing depots and K the
fixed cost to build new depot(s). Suppose in a
restoration area, depots p; (i=I, 2,..., n;) are already
located at cells g; (=1, 2,..., n;). After the disaster
happens, the emergency area is marked for ease of
modeling purpose whether no additional depot is
necessary to be added in the affected area or if the
demands of all cells including those in emergency area
are to be served by existing depots p; (i=1, 2,..., n;)
located at cells g; (=1, 2...., ny).

Suppose it is planned to add n, new depot(s) to
appropriate cells in the emergency area. The demand
for the whole area can be serviced by both the existing
depots and the new depots. For the existing depots, it
remains a resource assignment problem. For the new
depots, it is a location problem, i.e., first find the
optimal depot locations, then transfer resources to the
corresponding cells. Considering the fixed cost and
holding cost, the power restoration problem can be
formulated as follows:
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In the objective function equation (2), the first and
second terms are the fixed and holding cost,
respectively. The third term is the shipping cost
incurred by the existing depots. The last term is the
shipping cost with respect to the new depot(s). To
determine the optimal number of additional depot(s),
two cases are considered: (a) the demand of the
emergency area is larger than the capacity of existing
depots, i.e., Dy > Ay, and (b) the demand is less than
the capacity of existing depots, i.e., Dy < 4. These
cases are explained below.

(@) Dj > Ay

A pew depot(s) needs to be added to the emergency

area. The number of additional depot is determined by

trial and comparison. Algorithm 4 produces the
solutions to resolve this problem.

Algorithm A:

Step 1. One depot is added and the total cost in
Problem ND is calculated and stored;

Step 2. Increase the depot number by one, i.e., depot
number n = n + . Calculate the total cost in
Problem ND and store it;

Step 3. Compare the total costs of two different depot
numbers. If the total cost of added n + I
depots is greater than that of added n depots,
then stop. The decision is made that # depots
are added. Otherwise, update the total cost of
adding n depots by adding n + I depots. Go to
Step 2.

(b) Dy < Ay

In this case, it may or may not be necessary to add new

depot(s) to the emergency area. So first, the total cost

of Problem RAP is calculated. Then the total cost of
adding one depot is calculated in Problem ND. If the
former is less than the latter, then stop and no new
depot is necessary. Otherwise, it is necessary to add
additional depot(s) to the emergency area. The optimal



number of additional depots is determined in the same
procedure as described in condition (a).

Optimal solution for adding new depot(s)

It is planned to add two new depots, ¢ and d which have
the capacities for each resource as shown in the
capacity matrix 4. The unit cost matrix C, and inter-cell
distance matrix 4 remains the same. The fixed cost and
holding cost of each depot are given in Table 1.

Example 1: The capacity matrix A, unit cost matrix C,
demand matrix D = [Dy], and inter-cell distance matrix
d = [dy] are given as follows:

Cell _ Rl R2 R3
Dennt _ RI R2 R3 1 14 10 9
a 8§ 4 0 2 16 8 8
4= b 9 813 | D= 3 13 12 9
c 5 36 4 9 5 10
d 6 3 5 5 8§ 10 8
Cell
Resource Cost Celli 1 2 3 4 5
k 1 0 5 2 3 8
1 10 2 5 0 6 4 7
C= 2 4 d= 3 26 01 9
3 6 4 341010
5 8 7 910 0
Table 1. The fixed cost and holding cost of each depot.
Depot a | Depot b | Depot ¢ | Depot d
Fixed cost, K (8) 0 0 950 950
Holding cost, H($)| 80 50 50 50

The condition of Dy; > A4y and of Dy < Ay is verified
before solving the problem. In this set of data, Dy; < Ay,
holds because the capacity of each depot is larger than
the demand of the individual cells for every type of
resource. In order to solve the problem, the total costs
of three cases should be obtained: (a) No depot is
added, the demand is supplied by existing depots a and
b; (b) If one depot ¢ is added; (c) If two depots, ¢ and b
are added. The total costs are then compared and a
decision is made on how many additional depots are
needed. Solutions for case (a) have already been
obtained in Example 2. Following is the solutions for
cases (b) and (¢).

Case (b): Adding depot c: The depot ¢ should be
allocated at cell 5, which makes the minimum shipping
cost $2,586. The units shipped (the values of variables)
by three depots are ascertained by Problem ND.

Case (c): Adding two depots, ¢ and d: The depot ¢
should be allocated at cell 4, and depot d at cell 5,
which makes the minimum shipping cost $1,760. The
units shipped (the values of variables) by the four
depots are ascertained by Problem ND.
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Next we provide all the results on shipment, and
known data into a table and to make decisions. Table 2
shows the cost of adding new depots. It can be
observed from Table 2 that the total cost of case (a),
$3,498, is the smallest among the three cases. So, a
decision is made to use existing depots a and b to serve
the demand, no additional depot needs to be added in.

Table 2. Costs of adding new depots

Cond |Fixed cost| Holding cost Ship |TC($) | Deci
ition c d a b c d ($) sion
(1) = 1 - 180150 - | - |3368]3498 | Yes
(2) 19501 - 180:50150: - 12586 3716 | No
(3) 1950 950| 80 :50:50:50] 1760 | 3890 | No
(1) Using a and b, (2) Add 1 depot, (3) Add 2 depots.
Table 3. Costs of adding new depots
Cond |Fixed cost| Holding cost Ship Deci
tion| ¢ [ d|al|b|c|d]| (8 |TCES)|sion
(1) - - [80:50 - | - {3368 |3498 | No
(2) 17501 - 180i50:50 - | 2586|3516 | No
(3) 17501750| 80 |50 5050 | 1760 | 3490 | Yes

(1) Using a and b, (2) Add 1 depot, (3) Add 2 depots.

If the fixed cost of new depots is $750 and other data
remain the same (as shown in Table 3), the decision
will be for case (c): adding two depots that amounts to
$3,490, which is the smallest. This result is interesting
because it is worth adding two depots rather than one.

CONCLUSIONS

The depot location model can simultaneously find the
optimal locations for depots, and allocate the differing
types of resources shipped from individual depot to
each cell to meet the demand of cells. The model is
aimed at minimizing transportation time and cost to
make the power restoration efficient. For the
restoration of emergency area, Problem ND provides
the decision-makers with an evaluation tool to tradeoff
adding or not adding additional depots and the number
of depots. The depot location problem in this scenario
is usually modeled as a mixed-integer quadratic
programming (MIQP) which has difficulty in obtaining
an optimal solution for large cases. Fortunately, it can
be converted into an equivalent integer linear
programming (ILP). For the ILP, the optimal solutions
are obtained easily but the conversion results in a great
number of additional variables and constraints, which
still limit the software to solve small (about cell)
problems.
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