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ABSTRACT: The purpose of this research is to develop a depot location model to manage the resources needed
for restoring power efficiently and economically to an area affected by a disaster. The problem simultaneously
locates depots and determines the amounts of the resources shipped from the depots to each point of demand to
satisfy the demands of the various locations in order to minimize the total transportation cost. A mathematical
model is developed on an incremental basis as the problems become complex. The results show that the optimal
model can be used in power restoration management. For a large size problem, a two-phase heuristic is developed.
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1. INTRODUCTION

The depot location problem addressed here arises from restoration of electric power after a disaster. For
example, on August 26, 1992, hurricane ‘Andrew’ struck Louisiana and caused considerable loss of life
and property. In many areas, power could not be restored for more than 2 weeks. Industries, businesses,
schools, and other facilities of public interests were closed. The disaster also caused indirect losses
because of the delay in power restoration. The primary need after that hurricane was to restore
electricity as early as possible. Unfortunately, the utility companies lacked the resources to deal with
such a sudden need for a large number of emergency repair crews and vehicles. An efficient way to do
so was to set up or locate the depots in the area first and then prepare for restoration. Each depot was
equipped with the necessary repair equipment, vehicles, crews, and other resources. Thus, in this
logistic problem, determining optimal number of depots, optimal locations of depots, and optimal
number of repair crews and/or vehicles are of significance. The objective of this research is to present a
depot location model for power restoration problem.

2. PROBLEM IDENTIFICATION

The general problem is to simultaneously locate the depots and determine the resources shipped from
the depots to each cell to satisfy the demands of the various cells, while minimizing the total
transportation cost between depots and cells. Fig.1 shows this kind of problem in which there are two
depots, 4 and B, and 6 cells. Either depot may be assigned to any one of these 6 cells, but the
requirement is that, in each cell only one depot can be located. The research question is determine the
best route, that is, how to locate these two depots in the area in such a way that satisfies the demand of
cells and minimizes overall transportation cost? The model constitutes a major difference ﬁrorp fche
classical location models in that the model considers simultaneously different depots (with no restriction
on cells for depot location), multiple resources and the amount of the resources transported from

different depots to various cells.
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Fig. 1. A depot-location problem.

3. MODEL FORMULATION AND OPTIMAL SOLUTIONS

Let X;; be the quantity of resources k (k=1, 2,...., m) shipped from depot i (i = 1, 2,.., n) to cell j ( = 1,
2,..., N) and &; The binary (0, I) integer variables. It equals one if depot i is located at cell j or zero,
otherwise.

3.1 The general depot location problem

If depot i (i = I, 2,..., n) is located at cell j (j = I, 2,..., N), the resource & (k=1,2,..., m) transported from
cell i to cell j is given by the product &;X;;. The cost of transportation for the amount of resource £ can
be written as Cyd;;5;Xs;. Therefore, the total intercell transportation cost is given by:

m n N
Problem GP: Min TC= % C; > >.d;6,; Xy, )
k=1 =l j=1
Subject to
N
2 Xy < Ay i=1,2,.,nk=12..,m (12)
Jj=l
n N
Z . Xy 2Dy k=12, ..,m (1b)
i=l j=1 :
N
2.6, =1 i=1,2,..,n (1c)
j=1
n
25,.]- <1 j=12,..N (1d)
i=1
Xy 20 i=1,2,..,m j=1,2,..,N, k=1,2,..,. m (le)
65 =(0,1) i=1,2,..,nj=1,2,.,N (1)

The allocation model is a mixed-integer quadratic program (MIQP) and hence, it is difficult to solve it
optimally. In order to obtain the optimal solutions for relatively large cases, it should be converted into
an integer linear programming model.

3.1.1. An equivalent integer linear model

To obtain an equivalent integer linear model, a four dimensional variable Py is introduced. Let Py =
8; Xu. The equivalence procedure takes place in an additional constraint called “variable switching

constraint”. An integer linear program (ILP) can then be written as follows:
N m n

ProblemILP:  Min TC=3) > > > Cid; Py @)

%y
h=1 k=1 i=1 =l

Subject to (1a-1f) and the variable switching constraints:
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Pug *M(1-8;) 2 Xy, i=L .,m j=1 . .Nk=l .,m h=1,.,N (2¢c)

Py 20, i=1,.,n j=1, .. N; k=1,..,m;h=1, .., N (2g)
Here, M is a big number. The advantage of this model is that it is linear and it is easier to solve. The
disadvantage lies in the complexity of the constraints and variables. As compared to the problem GP,
the additional variable number is Nmn?, and the additional constraint number is 2Nmn’.

3.1.2. Optimal solution for the depot location mode] (Problem ILP)

Assume an ILP depot location model with a 2 depot, 5 cell, and 3 types of resource problem. Suppose
two depots, a and b, need to be allocated in the area. There are, three types of resources(R1, R2, R3)
stored at each depot. The capacity matrix A, demand matrix D = [Dj], unit cost matrix C, and inter-cell
distance matrix d = [d;] are given below: ’

Cellj
Resource k R Cost Cell i Rl R2 R3 Celli 1 2 3 4 5

Depoti Rl R2 R3 1| 15 1 5 2 3 1 0 9 9 20 2
A= a 0 1 2 c=2| 4 2 2 43 2 9 0 0 2570
b 5 3 1 3| 1 D=31 5 4 3 | d= 3|46 4 4 2069
411 4 3 4 | 202525 0 11

5| 4 4 0 51 277011 0

The solution yielded the values of variables (the units of resources to be shipped) as shown in Table 1.

Table 1. The units shipped from depots

Resource Cell 1 2 3 4 5
\Depot
Units of a 0 8 0 0 2
RI b 4 0 9 5 0
Transported| Total 4 8 9 5 2
Units of a 0 4 0 0.1 4
R2 b 7 0 5 2 4
Transported| Total 7 4 5 2 8
Units of . a 0 0 0 0 0
R3 b 9 3 7 5 8
Transported| Total 9 3 7 5 8

The solution indicates that depot a is located at cell 2 and depot b at cell 3. The units are shipped from
these two cells which make the optimal total cost $7,121.

4. THE TWO-PHASE HEURISTIC

Although the optimal solution of an integer linear programming problem can be obtained for a relatively
large matrix, it is still small with respect to a realistic problem. For a large size problem, a heuristic
helps the researcher obtain an approximate optimal solution. In this research, a two-phase heuristic for
the depot location is developed. Phase 1 determines the depot location, and Phase 2 determines the
amount of shipment from the depots. To complete the two-phase heuristic, two matrices should be
introduced: the first one is the total cost matrix TCC, and the second one is the shipment cost matrix

TCD. They are given by:

53 d(j, i) AG, )C() i DO E) < AG, )

TCCG, j) = { it )
S 3 d(j, A, K)CE) if D(hK) < AG, k)
h=1k=1

TCDG, j) = Y. d(, YD, K)C(E) @

k=1
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4.1. Algorithm 1: Phase 1: Depot allocation

Step 1: Calculate the total cost TCC(i, j);
Step 2: Find n smallest values of y (i =1, 2,....n, k=1, 2, ..., n)in each row of TCC;
. Step 3: Combine the values in each column; X k1), 242), ....n, oy = Y1zt Yike T - Vi
Step 4: Find the smallest value of X;; x1), 242, ... (n. ky Whose indexes k1, k2, ..., kn of are not the same.
Step 5: Assign depot / to cell k;, depot 2 to cell &, ..., depot 7 to cell &,.

4.3.1. Algorithm 2: Phase 2: Ascertaining resources

Step 1: Calculate TCD;
Step 2: Arrange the TCD(i, j), i =1, 2, .., N,j =1, 2, ..., N, in increasing order;
Step 3: Ascertain the resources transported to each cell from different depots;
Step 4: Repeat Step 3 and 4 untilj = N.

4.2. Nlustration of Two-Phase Heuristic

To illustrate the Two-Phase heuristic, the same example is used again. The total cost matrix

TCC is computed and is given in Table 2.
Table 2. A total cost matrix 7CC(j, j). Table 3. The shipment cost T7CD(i, j)
1 2 3 4 5

Depof 1 | 2 | 3 | 4 | 5 1| 0 7 504 1280 13
Cell 2| 1944 0 496 1600 5320
a [1958 268 2096 1 ICD= 3 5336 316 0 1280 5244

b |5889 7228 10264 5957 11078 4| 2320 1975 2480 O 836

5 232 5830 8556 704 O

By following the algorithm 1.1, the depot allocation is given as: Depot a is assigned to cell 2 and depot
b is assigned to cell 1. The next step is to determine the amount of resources that should be shipped
from the appropriate depots. This is done by Phase 2. In Phase 2, the shipment cost matrix TCD is
calculated and shown in Table 3. Because depot a and b are assigned at cell 2 and 1, respectively, in
each column, only the elements of these two rows (row 2 and row 1, as shaded in table) need to be
compared. After ascertaining, the values of variables are the same as those obtained in ILP Problem
which are shown in Table 1. The total cost obtained by Two-Phase heuristic is given by: TC = §7,121.
The performance of the heuristic is satisfactory in this small size example. The algorithm is based on
total cost matrix TCC allocating to the depots and based on the shipment cost matrix TCD assigning the
units from the depots to cells.
5. CONCLUSIONS

The depot location problem in this scenario is usually modeled as a mixed-integer quadratic
programming (MIQP) difficult to obtain an optimal solution for large cases. Fortunately, it can be
converted into an equivalent integer linear programming (ILP). For the ILP, the optimal solutions are
obtained easily but the conversion results in a great number of additional variables and constraints,
which still limits the software in solving large problems. A heuristic is considered effective to provide
an approximate solution. The results show that the two-phase heuristic developed in this research works

well for the depot location problem.
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