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Abstract

One of the main objectives of a successful expert system
is to be able to reach a conclusion by asking a small
number of questions. However, this may be a misleading
approach when the cost of answering questions posed by
the system varies. When different questions are
associated with different costs then, it is possible a
question asking strategy to be very costly when it focuses
only on minimizing the total number of questions. This
paper expands an existing effective question asking
strategy and illustrates the development of a cost effective
question asking strategy for Horn clause systems.

Introduction

The great proliferation of the use of rule based systems in
a vast area of applications has defined the need for new
research problems to be solved. Most of the new
problems have emerged from the requirement to handle
larger rule bases. When the size of a rule base increases,
the number of questions posed to the user by the
inference engine may increase as well. A good question
asking strategy may lead the inference process to the final
goal efficiently. '

A question asking strategy is efficient if it can generate
the pertinent questions quickly. Furthermore, such a
strategy is effectiva if it can reach the final goal by asking
as few questions as possible. A second way to define
effectiveness is by minimizing the total cost needed in
answering the pertinent questions posed by the system.
This paper presents the development of a question asking
strategy for Horn clause systems which is both efficient
and effective.
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Some of the early applications of experts systems consider
the issue of question asking strategies. The system
EXPERT [Hayes-Roth, Waterman and Lenat, 1983] uses
pre- ordered lists of rules and questions. Also the
PROSPECT system [Duda, Gasching and Hart, 1979} uses
a scoring function in implementing a question asking
strategy.  Another question asking strategy, called
"Alpha-Beta pruning”, was introduced by Mellish [1985]
for acyclic inference nets. In that strategy irrelevant
questions are dropped from consideration.

de Kieer and William [1987] developed a general entropy
technique for diagnosing multiple faults in an electrical
circuit. The idea of that technique can be applied to the
problem of question selection in rule bases. This is
possible because a rule base may be viewed as an
electrical circuit composed of AND-gates and OR-gates.
Wang and Vande Vate [1990] proved that an effective
strategy, which optimally selects the next question, is
never efficient. That is, it is NP-hard to design such a
strategy. This is also the case for Horn clause systems.
They also developed the concept of the Minimum Usage
Set {or MUS) strategy which attempts to approximate
effective strategies in O(nlogn} time.

In general, a process for choosing a question is composed
of two steps [Hayes-Roth, Waterman, and Lenat, 1983].
These two steps are goal selection and question selection.
In the goal selection step, a question asking strategy
chooses a potential conclusion to pursue. In the question
selection step, the strategy selects a question which may
help to reach the goal selected in the first step.

The present paper presents some theoretical results
regarding the problem of selecting the next question given
a set of candidate questions. Each question is an inquiry
of the value (true or false) of the corresponding variable.
It is assumed that the system knows the likelihood (or
probability) that a given variable has true value. It is also
assumed that for each such guestion the system knows
the cost in answering that question.

In this paper it is first assumed that all these costs are
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equal. Therefore, the objective in this case is to try to
minimize the total number of questions required to prove
a given goal. Next, it is assumed that questions are
associated with different costs. In this case the objective
is to try to minimize the total cost in proving a given goal.
Some experimental results are also provided. Since the
proposed strategies are based on the original MUS strategy
[Wang and Vande Vate, 1990], the next section briefly
describes this strategy.

The MUS Strategy

A Hormn clause is a rule in which a finite set of positive
assertions (i.e., binary variables) implies one positive
conclusion. Consider a collection of Horn clauses. Let
the set N index the assertions in this collection. These
assertions are denoted as A;, where j € N. The set of
natural numbers D(i} indexes the Horn clauses which have
conclusion A;. Let the ordered pair (i,d) denote the d-th
clause with conclusion A;. Furthermore, let I(i,d} index
the assertions in the antecedent part of the clause (i,d).
This notation is adopted from [Wang and Vande Vate,
1990]. Based on this notation a Horn clause system can
be expressed as:

IF (A, is true for all j € lli,d)) THEN (A;is true)

for any i ¢ N and d € Dfi} (1)
Horn clause systems are a special class of a logical system
which is widely used in practice (see, for instance,
[Hooker, 1988a and 1988b]). PROLOG, a popular logic
programming language, relies on Horn clauses. The most
distinguished characteristic of Horn clause systems is that
inference in a Horn system can be carried out quickly
[Dowling and Gallier, 1984}, although inference is hard in
ordinary logical systems. Jeroslow and Wang [1989]
observed that inference in a Horn clause system can be
represented by a Leontief flow problem which provides
information on the proof structure.

If the value of an assertion (variable) can be provided by
the user we call it an observable assertion. An assertion
is called an unconfirmed observable variable (or UOV] if it
is observable but its value is not given yet. Let A, be a
potential goal to be proved. A set of unconfirmed
assertions is an unconfirmed observable set {or UOV set)
of A, if the assertion {goal) A; can be proved true when
all the assertions {variables) in that set have "true” value.
But if any one of these assertions were false, then A
could not be concluded from the others. Itis possible an
assertion A, to have many such sets. The smallest such
set is called the minimum inquiry set of A, A smallest
UOV set over all the UQV sets of the potential goal A, is

called a global minimum inquiry set of A,

506

Wang and Vande Vate [1990] showed that to determine
the global minimum Inquiry set is an NP-hard problem,
They proved it by using the concept of the so-called
sub-effective strategy. Given the problem of proving
whether a goal Aj (where A, is a non-observable
assertion) is true or false, a sub-effjective strategy selects
that UOV set S of A; which is most likely to have all its
members affirmed. In other words, the product

I1 ;.

A1¢S

is maximum (where P; denotes the likelihood or probability
that an unconfirmed observable variable A; is true).

However, the problem of finding the previous set S is NP-
hard. The usage of A; on A, is defined as the number of
times A, is used in the process of proving a final goal A,.

The usage of an unconfirmed observable set S-I of A.is the'

sum of the usages of the assertions in §; on A;. The
minimum usage set of A, is an unconfirmed observable set
of A; with the minimal usage. The global minimum usage
set has the smallest usage among all UOV sets. In fact,
the following is true for this set:

I =

AICSj

is maximum,

where u; is the usage of A, in proving the goal
corresponding to the set Sj.

A global minimum usage set can be found in log-linear time
by using the labeling algorithm developed in [Wang and
Vande Vate, 1990]. The original MUS strategy was
organized in terms of the following steps:

Step 1:
Step 2:

Select an MUS set (it takes Ofnlogn) time).
Select to ask a question about an
unconfirmed variable in the MUS set.

If the response is true, go back to step 2.
If the response is false, then select a new
MUS set and go back to step 1.

Stopping rules:

Step 3:

Stop:  If all of the variables in the MUS set are true.
In this case the goal is proved to be true.
Stop:  If no new MUS set can be determined. In

this case the goal cannot be proved.

The following theorem states an optimal question selection
rule only for step 2, above. Therefore, by using this rule
it is not guaranteed that the entire strategy will be optimal.
This theorem is proved in [Triantaphyllou and Wang,
1991].



Table 1. The Seven Strategies.

UOV Set Selection Variable Selection Scenarios
Scenarios
Random MLT LLT
Random (RND) RND-RND RND-MLT RND-LLT
Sub-effective (SUB) not considered SUB-MLT SUB-LLT
MUS not considered MUS-MLT MUS-LLT
Step 1: Select a UOV set.
THEOREM 1: Step 2: Select to ask a question about an

If the next question in proving a goal A, is to be selected
from a given UOV set of A, in a Horn clause system then,
in order to minimize the expected number of questions, the
next question must be on the value of the assertion which
is least likely to be true compared to the other assertions
in the UOV set.

In other words, the best strategy is to ask first on the
value of the variable which is least likely to be true. As it
will be shown in the next section, this modification in step
2, makes the original MUS strategy to be almost optimal.

Computational Experiments

Computer experiments compared the performance of
seven question asking strategies on 64,000 randomly
generated problems. For each problem it was assumed,
without loss of generality, that there was only one
potential goal to be proved. The test problems were in the
form of a group of UOV sets. Since the objective of these
experiments was to determine the number of questions
required by each question asking strategy, deduction was
not necessary and so the problems did not need to be in
the form of "IF ... THEN ..." rules.

The test problems were randomly generated with two
parameters; the number of observable variables and the
number of UOV sets. For each parameter the eight
values, 10, 20, 30, ..., 80 were considered. Furthermore,
each observable variable was assumed to have probability
0.50 of belonging to a UOV set. For each combination of
a number of variables and a number of UOV sets, 1,000
random problems were tested. Since there are 8x8 = 64
different cases of test problems, 64,000 random problems
were solved by applying the seven strategies.

The probability P;, that an observable assertion {variable)
A, is true, was a random number from the interval [0, 1).
Furthermore, the usages, y;, were random integers
uniformly distributed in the interval [1, 11] (this interval
was considered arbitrarily). Each problem was tested
according to the following steps:
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unconfirmed variable in the UOV set.

Step 3: If the response is true, go back to step 2.
If the response is false, drop all the UOV sets
that include this false variable and go back to
step 1.

Stopping rules:

Stop:  If all of the variables in an UOV set are
true. In this case the goal is proved to be true.

Stop:  If no UOV set is left. In this case the goal
cannot be proved.

All the strategies that were examined were comprised of
two major phases. In the first phase a UOV set was
selected (step 1). In the second phase a variable was
selected from the previous UOV set {step 2). For the case
of the UOV set two major scenarios were examined. In
the fist scenario the UOV set was the set needed by a
sub-effective strategy. That is, the set S which maximizes
the product H P; . Thatset was called the SUB set.
AieS

In the second scenario the UOV set was the MUS set of
the goal to be proved.

The next question was based on a variable of the UOV set
selected in the first step. Three scenarios were considered
in selecting the next variable (step 2). In the first scenario
the variable was randomly selected. The second scenario
was to select the most-likely-true {(or MLT) variable. That
is, first asking the variable which is most likely to be true.
The third scenario was to select the least-likely-true (or
LLT) variable. That is, first asking the variable which is
least likely to be true. Besides the previous six strategies,
the strategy of  selecting a random UOV set with a
random variable (or RND-RND) was also considered.
These seven strategies are depicted in Table 1.

A UOV set was determined as follows (see also Table 1):

Under the random scenario, by choosing randomly a UOV
set.

Under the sub-effective scenario, by choosing a UOV set

S such that the H P;, product was maximum.
AieS
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Mombder of Questions Under Different Strategies

Under the MUS scenario, by choosing a UOV set S such

u
that the product I I P; !, was maximum. That is,
AieS

by selecting the MUS set.

As it can be seen from the way these test problems were
considered in that investigation, the sub-effective strategy
{SUB) and MUS sets can be determined by simply
examining the values of the corresponding products. In
this way the performance of a sub-effective strategy can
be studied without having to solve the NP-hard problem
needed in finding the required maximum product. In other
words, the test problems assumed that all the related UOV
sets are known a priory. However, in a real situation the
UOV sets are not known a priory and finding the
sub-effective strategy (SUB) set is an NP-hard problem,
while finding the MUS set takes only log-linear time
[Wang and Vande Vate, 1990].

Figures 1 and 2 illustrate the results of these experiments.
Figure 1 illustrates the average number of questions asked
under each strategy. The horizontal axis depicts the
number of variables. The vertical axis depicts the average
number of questions asked under a strategy.

These figures also present the lower bound of questions
for each case. Since the actual values of the variables in
the UOV variables were assumed to be known for the
purpose of these simulated experiments, a lower bound of
the number of questions asked by any strategy was
calculated as a set covering problem [Triantaphyllou and
Wang, 1991].

Figure 2 presents the performance of each strategy
relative to the lower bound described above. For this
reason, the lower bound is represented by a horizontal line
with value on the vertical axis equal to 1.00. All the other
lines were normalized subject to this line.

It can be easily seen from the experimental results that the
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Performance of the Strategies Relative to the Lower Bound

MUS strategy is a good ‘approximation of the sub-effective
strategy on these random test problems. Taking under
consideration the fact that the MUS strategy takes only
Olnlogn) time, it is concluded that this strategy is also a
good practical question asking approach. The same results
also demonstrate that given a UOV set then, by starting
with the least-likely-true variable is much better than
starting with the worst-likely-true or just with a random
variable.

Questioning Rules for AND-gates and OR-gates

In this section the original MUS strategy is extended to the
situation where each question is associated with a
different answering cost. Therefore, the objective now is
to reach the final conclusion by trying to minimize the total
questioning cost.

In this section a Horn clause system is viewed as a set of
AND-gates and OR-gates. Then, two theorems are stated
regarding these two types of gates. The first theorem
describes the conditions for optimally asking questions
given a clause. The second theorem describes what
should be the optimal clause to be selected first. A
heuristic approach is also developed in this section. This
heuristic approximates the optimal UOV set, to be selected
in step 1, for the case of having different answering costs.

A Horn clause (i,d): (IF (A, is true for all jel(i,d)) THEN {A;
is true)), can be viewed as an AND-gate. This is possible
because the assertion A, is true exactly if every assertion
Aj in the antecedent part of the clause (i,d) is true.

Furthermore, it can be observed here that the assertion A
can be proved by using any clause (i,d), where d € D{i).

Therefore, such an assertion can be viewed as an OR-gate.

Let AND[{Aq, Ay Ag, ..., AL), A denote an AND-gate.
This gate represents the Horn clause with antecedent part
the assertions (A4, A,, Ag, ..., Ay} and consequent part
the assertion A,. Let ORI(i1, i2, i3, ..., il}, A,] denote an




OR-gate. This gate indicates that assertion A, can be
proved by using any one of the following clauses: (t,i1),
- (1,i2), {t,i3),..., (t,il).

. Let C; be the cost in answering the question whether
. assertion A, is true or false. Then, it can be easily proved
. that theorem 2 gives the necessary and sufficient
. conditions for asking questions within a given AND-gate so
" “that, C(t,d), the expected cost (within that AND-gate) will
. be minimal.

- THEOREM 2:

- For an AND-gate, defined as AND[(A,, A, Ay ..., A,
A, the questioning sequence (A, Ay Ay ..., Ayl yields
‘the minimum expected cost if and only if the following is
- true

L C.l < cibl
» 1- Pl 1- Pifl

for i=1,2,3,...,k-1.

Furthermore, the expected minimum cost is:

k-1
Cli,d) =C, + CP + CyPP, +...% c,,}'[ Py,
-1

- In the previous theorem {t,d) denotes the d-th Horn clause
. which has as consequent the assertion A, It is also
> assumed that this clause has in the antecedent part the
. assertions {Aq, Ay Ag, ..., Ay}, Let Pit,d) denote the
' probability that all the assertions in the antecedent part of
~ clause {t,d) are true. Then, the following relation is true:

P(t,d) = 2.
Jei(t, d

. At this point it is assumed that the clauses involved in an
" OR-gate do not have assertions in common. Then, it can
be easily proved that the following theorem states the
-~ necessary and sufficient conditions for selecting the next
" clduse, so that the total cost will be minimal.

= THEOREM 3:

- For an OR-gate, denoted as OR[(1, 2, 3, ..., k), AJ, the
g questioning sequence (1, 2, 3, ..., k] yields the minimum
. expected cost if and only if the following is true

cld,t) C(i+1,t)
P{i,t) - P(i+1,t)

fOI i=1,2'3,¢o-,t"1-

Furthermore, C,, the expected minimum cost is:

Cpe = C(t,1) + C(t,2) (1-P(t,1)) +
+ C(¢t,3) (1-Pk(_f,1)) (1-P(t,2)) +

P C(c,k)}] (1-P(t, 1)) .
=]
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If all the costs C; are equal then, theorem 2 states that
given an AND-gate the best strategy is to start with the
least- likely-true assertion first. This is in agreement with
the approach and experimental results presented in section
3. The next section uses the last two theorem to design
an efficient heuristic when the total questioning cost is
under consideration.

A Heuristic Approach for Selecting a Cost-Effective UOV
Set

When different assertions bear different question costs,
then it is desired to find in step 1 that UOV set (i.e., set of
candidate questions} which has the minimum expected
cost. Once this UOV set is determined, then theorem 2
can be used to select the questions.

Determining the optimal UOV set in step 1 is an NP-hard
problem. This can be proved easily as in the UOV set
selection problem discussed in [Wang and Vande Vate,
1990]. However, here an efficient heuristic approach is
presented to solve the UQV set selection problem. The
proposed approach takes only log-linear time. This
approach is based on the labeling algorithm presented in

[Wang and Vande Vate, 1990] and on theorems 2 and 3.

Consider a Horn clause system given as (1) in section 2.
Let C; be the cost to determine the value of assertion
{variable} A;. As it was noted earlier, let P; be the
probability that assertion A; has true value. If A is a
non-observable variable, then it is assumed that C; equals
to the infinity.

In the following developments LC; and LC(i,d) denote the
labels of cost for variable A; and clause (i,d), respectively.

Similarly, LP; and LP(i,d) denote the labels of pr ili
for variable A; and clause (i,d}, respectively. Given the
previous terminology the labeling procedure is as follows:

1e, = 15.0 LC(2,0) = 15,0
LP; = 0.85 LP(2,0) = 0.85

(3)—(e

1,1)=36.8 LCg=30,0 LC(5,0)=20.0
LP(1,1)=0N612 /Lps-o.so 1LC(5,0)=0.90
LCN® 46,428 LG, = 26.0  LC(331) = 26.0
Lby 2.0.822 LPy = 0.72  LP(3,1)\~ 0.72
LE(152)=29.5 LCg=10.0 LC(6,0)=10.0
LP(1,2)=0.54 LPg=0.80 LC(6,0)=0.80

1C, = 10.0 LC(2,0) = 10.0
LPy; = 0.75 LP(2,0) = 0.75

Figure 3. plagram and Labels for Example.



LABELING PROCEDURE

Begin { Labeling Procedure }
For each unconfirmed observable variable A; form
labels
LC;and LP; as follows: LC; = C; and LP; = F;
WHILE there is an unlabeled element t, all of whose
immediate nodes have been labeled, label t
according to the following two rules:
Rule 1: If the element t is a clause (i,d), then the

labels LCfi,d) and LPfid] are:
LC(4,d) = Cy + Cy Py + Cy Py Py +...+
m-1
+ cj_ll Py, (1)
where: ji, jo. 3 «our Iy € 1i,0)
and m is the size of the set Ii,d)
and R o for k=1,2,3 m-1
1 - Pj 1 -Pj , , [ I
k k1
LAid) = H P/ 3]
hKidy

Rule 2: If the element t is an assertion A, then the
labels LC; and LP; are:

LC, = LC(d) + LC(La)(1-LPUd,) +
+ LO(hd) (1-LP(Ld)(1-LP(Ldy) +
-1

LC(i.d,,):I':! (1-LP(dY), @)

where assertion A; is the conclusion of the
clauses (i,dy), (i,d5), li,dg)...., fid,) and
only of these clauses.

LOGd)  LOUide) i i
and LR.d) LA, . for k=1,23,..,m-1,
Py = 1 - J10-LAUG). @)

End { Labeling Procedure }

Relations (1) and (3), above, are derived by applying
theorems 2 and 3, respectively. If the final goal is to
determine the value of the non-observable variable A;, then
the previous labeling algorithm leads to a cost-effective
UOV set for step 1. Suppose thatin a Horn system there
are n variables and totally m occurrences of these
variables in the system. Then it can be proved, as with
the MUS set selection algorithm in [Wang and Vande Vate,
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1990], that this labeling procedure takes only O(mlogn)
time.

The previous labeling procedure assumes that there are no
cycles in the Horn system. However, it can be extended
to the general situation where cycles are allowed by using
the ASSIGN subroutine presented in [Wang and Vande
Vate, 1990]. The following section presents an example
of how the proposed cost-effective question asking
strategy can be used.

An Example

Suppose that a Horn system is comprised of the following
three clauses (rules):

IF (A, AND A3) THEN A,
IF (A3 AND A4) THEN A,
IF (A AND Ag) THEN A,

(clause (1,1) or: Ry ;)
(clause (1,2} or: Ry ,)
(clause (3,1) or: Ry 4).

Therefore, the variables (assertions) A,, Ay, Ag, and Ag
are unconfirmed observable variables and A, A3 are
non-observable variables. Suppose that the final goal is to
determine the value of variable A,. Let the following table
represent the costs and probabilities associated with these
unconfirmed observable variables.

Variable A; Cost C; Probability P,
m
A, 15 0.85
A, 10 €88 0,75

Ag 20 0.90
Ag 10 0.80

Given all the previous data, the diagram which represents
this Horn system and the labels derived by applying the
proposed labeling procedure are as in figure 3. From this
figure and theorem 3 it can be seen that the cost-effective
UOV set to be selected in step 1 is: {A,, Ag, Ag}. Its
estimated expected cost for this UOV set is: LC(1,2) =
29.5 and its probability label is: LP(1,2) = 0.54.

From theorem 2 it follows that the questions (in step 2) to
be asked should be in the order: A4, Ag, Ag. If the user
answers one of these questions with "false", then the
system will update the diagram and the labeling procedure
will be applied again to derive a new cost-effective UOV
set (step 1). This process will continue until no UOV set
is left {in which case the final goal cannot be proved} of
the user reaches a UOV set with only "true" answers. In
the second case the final goal has "true" value.




- concluding Remarks

A successful question asking strategy guides the inference
process in proving the final goal by asking as few
' questions as possible. When the total questioning cost is
. considered, then such a strategy should reach the final
- conclusion by minimizing the total cost. Two main steps
. can be identified in a question asking strategy; form a set
' of candidate questions (step 1) and select a question to
- ask next from the previous set (step 2).

In this paper we provided efficient rules for selecting the
~ next question to ask from a set of candidate questions.
" This is done for two cases. In the first case the objective
" is to minimize the total number of questions. In the
second case the objective is to minimize the total cost in
answering these questions.

Furthermore, this paper also presents ways for determining

the set of candidate questions (step 1). This is also done

for the two cases mentioned above. The approaches

. proposed in this paper are based on two labeling

- algorithms and take log-linear time. These approaches are

" heuristics which attempt to approximate the optimal
strategies. In the case of minimizing the total number of
questions, experimental results indicate that the proposed
approach is very effective. Since Horn clause systems
are very popular in many practical applications, more
research in this area is needed.
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