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1.  Introduction 

 Breast cancer is the most common cancer in women in the U.S.A. with an estimated 182,000 cases 

in 1995 (1).  The most effective tool in the battle against breast cancer is screening mammography.  

However, several retrospective analyses have found diagnostic error rates ranging from 20% to 43% (2, 3).  

Also, of the breast biopsies performed due to suspicious mammograms, 70%-89% will be found benign (4). 

                         
1 The first two authors gratefully recognize the partial support from the Office of Naval Research (ONR) grant 
N00014-95-1-0639.  The first, second and fifth authors also recognize the partial support from the CAST and COBASE 
programs at the National Research Council (NRC).  The second and fourth authors recognize the partial support from 
ONR grant N0001-97-1-0632.  

Published in: 
Journal of Computers and Biomedical Research, August of 2000, Vol. 33, No. 4, pp. 296-313. 



 

 
 
 2 

 Elmore, et al., in (5) studied the variability of radiologists' interpretation of a set of mammograms.  They 

observed an average intra-observer variability of approximately 8% in addition to a 19% inter-observer 

variability for the diagnosis of cancer, for which the variability in management recommendations was 25%. 

 They also found that 9 out of 10 radiologists recognized fewer than 3% of the mammograms which they 

screened 5 months prior, while one out of 10 claimed to have recognized about 25% of the cases (5).  These 

startling statistics and other discussions on computer-aided diagnosis (CAD) (6, 7, 8) clearly demonstrate 

the need for (and the possible magnitude of) improvements in the reliability of breast cancer diagnosis. 

 Today, with the proliferation of powerful computer technology, a great effort is directed toward 

developing computerized methods that can assist radiologists in breast cancer diagnosis.  Currently, such 

methods include neural networks, nearest neighbor methods, discriminant analysis, cluster analysis,  

decision trees, and linear programming based methods (see, for instance, (9, 10, 11, 12, 13, 14, 15, and 16)). 

 These methods extract general rules which are based on a sample of specific cases.  Thus, the better the 

available data represent the underlying rules, the more accurate the predictions based on the extracted rules 

can become.  Therefore, these methods rely on obtaining representative samples.  

 Often the available training data are insufficient to achieve a desirable prediction accuracy.  In other 

words, the available knowledge is often insufficient to make confident recommendations.  According to 

Jonson (17), the use of Bayesian models in medical diagnosis can be controversial, if not unethical, because 

the fundamental requirement of strict randomness rarely occurs and it can rarely be tested with the available 

training data.  This critical issue is elaborated on in sections 2 and 3 of this paper. 

 Monotonicity of the data is a frequent property that has not been adequately utilized by traditional 

approaches.  This property has the potential to significantly improve the reliability of breast cancer 

diagnosis.  The monotonicity approach described in this paper does not assume a particular model and in 

this sense maintains a general representation power.  However, it should be stated at this point that if the 

existence of an appropriate parametric model (as described by Duda and Hart in (18)) can be established, 

then its application may lead to a higher degree of confidence than the use of the monotonicity approach 

described in this paper. 

 This paper is organized as follows.  In section 2 we introduce some reliability criteria of computer-

aided breast cancer diagnosis.  The same section also uses these criteria to analyze the reliability of some 

published diagnostic results which are based on neural networks.  Section 3 is devoted to the 

representation/narrow vicinity hypothesis.  Section 4 presents the results of the validation of this hypothesis 

on 11 mammographic and related clinical features.  The last section summarizes the main results of this 
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study and formulates some directions for future research. 

 

2.  Reliability Criteria 

 The validity and accuracy (reliability) of a computer-aided diagnostic system should be reasonably 

high for clinical applications.  To explore the issue of reliability, assume that we have the 11 binary (0 or 1 

value) diagnostic features described in Appendix I.  This example is a rather simple one since it assumes 

only 11 features which are binary valued and the entire setting to be deterministic (i.e., a given case always 

belongs to the same class).  However, this illustrative setting is still sufficient to provide the main 

motivation of the key concepts described in this paper.  By using the previous 11 features, each medical case 

can be expressed as a combination of binary values defined on these features.  For example, the ordered 

sequence (01111100011) describes the case with "0" value for the 1st, 7th, 8th and 9th features  and with 

"1" value for the rest of them.  Furthermore, by considering the definitions in Appendix I, the above binary 

vector means that: 

    The number of calcifications/cm2 is small (value 0);    

  the volume (in cm3) is small (value 1);  

  the total number of calcifications is large (value 1);    

  the irregularity in the shape of individual calcifications is marked (value 1); 

  the variation in the shape of calcifications is marked (value 1);  

  the variation in size of the calcifications marked (value 1);  

  the variation in density of the calcifications is mild (value 0);  

  the density of the calcifications is mild (value 0);  

  ductal orientation is not present (value 0);                

  comparison with previous exam is "pro cancer/biopsy" (value 1); 

  associated findings are "pro cancer/biopsy" (value 1). 

Please note that the grade "small" was deliberately coded differently for the number of calcifications/cm2 

and the volume (in cm3).  This step allowed us to take advantage of the monotonicity property (as described 

later), which is of critical importance to the effectiveness of our method. 

  Next, a computer-aided diagnostic system which is based on the previous 11 binary features should 

be able to categorize new cases represented by binary vectors.  Each such case is assumed to be either in the 

"highly suspicious for malignancy" class or in the "not highly suspicious for malignancy" class and only one 

of them.  That is, in mathematical terms a computer-aided diagnostic (CAD) system operates as a 
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discriminant function, say f(x1, x2, ...,xn), which is defined in the space of n features denoted as x1, x2, ..., xn.  

In order to help fix ideas, assume that a discriminant function for the current illustrative example was 

constructed from a sample of 80 training cases (each one of which is either highly suspicious for 

malignancy or not highly suspicious for malignancy).  It should be noted here that many, if not the majority, 

of published studies consider sample sizes of about 80 cases each (7).  Next, suppose that the function  f  

discriminates the entire state space (which in this example is of size:  211  = 2,048) by categorizing 78% (i.e., 

1,597) of the cases as suggestive of cancer and the remaining 22% (i.e., 451) as negative for cancer.  

 Some key definitions are summarized next.  The state space expresses all possible combinations of 

features.  Note that the concept of state space is different than that of population.  In fact, the population is 

a subset of the state space, because the actual population may not exhibit all the feature combinations.  That 

is, some cases may not occur in reality and can be eliminated from consideration.  As a result, the sample 

set (i.e., the training data) consists of elements (binary vectors in our illustrative example) drawn, with 

replacement, from the population rather than from the state space.  Another result is that a sample may not 

represent the population and the state space equally.  For instance, if a population includes 1,843 unique 

cases (i.e. 90% of the state space of 2,048 cases), then a sample of 80 vectors covers at most 3.9% of the 

state space and 4.3% of the population. 

 Therefore, in this illustrative scenario, it is assumed that 80 different cases were used to represent 

2,048 cases.  At this point one may wish to ask the question: "Is the function, which was inferred using a 

training sample of no more than 4.3% of the population, sufficiently reliable to recommend surgery for new 

patients?"  While this function can be an interesting one, its statistical significance is questionable for a 

reliable diagnosis of cancer.  If one considers multi-valued, instead of binary features, then a sample of 80  

(which is a common sample size in published studies) becomes a minuscule portion of the entire state space. 

 The statistical weakness becomes even more dramatic if one considers more features. 

 Next we define some key parameters for dealing with the reliability issue.  Let us denote the 

number of unique cases in the sample as S,  the size of the state space as N, and the population size as P. 

 Obviously, the following relationship is always true: N $ P $ S.  It should be observed that the sample size 

may not be the same as the number of training cases, since the sample size is the number of unique cases.  

For instance, patient #1 and patient #2 may correspond to the same combination, say (01111100011).  

Therefore the size of the sample set may be smaller than the number of cases in the sample.  For example, 

the 15,000 mammograms of breasts without malignancy (unpublished data provided to us by the Woman's 

Hospital of Baton Rouge, LA, in 1995) can be represented by fewer than 300 combinations of 11 features.  
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Thus, the number of cases here is about 50 times greater than S.  

 Next we define the index of potential reliability by the ratio S/N and the index of actual 

reliability by the ratio S/P.  In practice, it is very difficult to accurately estimate the size of the population, 

and consequently the index of actual reliability S/P.  Obviously, if one has a sample which covers the entire 

population, then the index of actual reliability is equal to 1.  On the other hand, if one has a proper subset of 

the population, then the size of the population cannot be determined directly.  Note that it is possible to have 

different levels of reliability for different diagnostic classes within the same training set.  In order to 

demonstrate this, we next compute the indices of potential reliability for the previous 11 features.  Suppose 

that there are N1 = 1,600 "highly suspicious for malignancy" vectors in a state space (which is of size 211 = 

2,048).  Then the remaining N0 = 448 (= 2,048 - 1,600) cases correspond to  "not highly suspicious for 

malignancy" vectors.  Next, suppose that there are S1 = 50 unique "highly suspicious for malignancy" cases 

in some training set.  Similarly, let the class "not highly suspicious for malignancy" to have S0 = 400 unique 

cases in this training set.  Then the indices of potential reliability for the respective groups are S1/N1 = 

0.03125 (= 50/1,600) and S0/N0 = 0.89286 (= 400/448), respectively. 

 In the light of the previous reliability indices, we next consider the neural network (NN) approach 

described in (13).  These authors constructed two different feed forward neural networks (NNs) which 

contained two layers of processing elements (PEs).  Both NNs contained 43 input units, each one 

corresponding to an extracted radiographic feature, and a single PE in the output layer representing the 

diagnosis (which was 0 for benign and 1 for malignancy).  The two NNs differ merely in the number of PEs 

in the hidden layer; the first one used 10 while the second one used only 5 PEs.  For each NN 

independently, they trained the PEs by back propagating their errors.  For the training process, a set of 133 

cases was selected from a mammography atlas.  In addition, 60 other cases (of which 26 were malignant and 

34 were benign) were randomly selected to evaluate the accuracy of the trained neural network.  An 

experienced mammographer extracted the 43 features from each case and rated each feature on a scale from 

0 to 10. 

 We can compute the potential reliability, as expressed by the sample/state space ratio, for the 

training data.  The state space was defined on 43 features, each using 11 grades.  Thus, this state space 

corresponds to a total number of 1143 different cases.  Therefore, S/N = 133/1143 = 2.21H10 -43.  This means 

that the available sample is 2.21H10 - 41 %, a minuscule fraction, of the total possible number of different 

vectors in the state space.  Note that for a particular number of training cases, the reliability index depends 

on the size of the feature set.  As a result, 133 cases may be an insufficient number of cases for the previous 
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state space, while say 32 cases, could be sufficient for a reliable diagnosis in a smaller state space.  Suppose 

that one has only 5 binary diagnostic features.  Then, the state space consists of 32 (= 25) combinations of 

these features.  If all the 32 training cases represent unique vectors, then the size of the sample is 32 and the 

sample/state space ratio is equal to 1 (= 32/32), which is much better than the previous value of 2.21H10 - 

41%.  This example illustrates that the relative number of cases (i.e., the indices of reliability) is crucial, 

while a large number of cases may not be as valuable. 

 Therefore, the question which is naturally raised here is: "Can a relatively small number of 

training cases be considered reliable in order to assist in accurately diagnosing new (and thus unknown) 

cases?"  Some neural network theoreticians (e.g., (19) suggest that the number of cases should be no less 

than 10 times the number of connections (i.e., the parameters needed to be estimated), to reliably train a 

neural network.  Notice that this measure of reliability is similar to our index of potential reliability 

expressed as the ratio S/N.  Gurney IN (7) has shown that this relatively weak requirement is not fulfilled in 

breast cancer CAD methods.  For example, the largest neural net considered in (13) has 43 input units, 10 

hidden layer PEs and a single output PE.  Thus, this network has 440 (= 43H10 + 10H1) connections which 

is less than 532 (= 4H133), where 133 is the number of cases used to estimate the weights for these 

connections. 

  Boone IN (8) disputed the 10:1 requirement on the number of cases versus the number of 

connections.  He compares the neural network with biological networks (e.g., radiologists) and argues that 

for biological networks the ratio is much worse, over 10 10 times less, than the neural networks studies 

criticized by Gurney (7).  Thus, Boone wonders:  "Is there any reason that we should hold a computer to 

higher standards than a human?"  Maybe not, but we should ask for both systems the question:  "Is 

learning based on a small training subset sufficiently reliable to distinguish suspicious from non-suspicious 

(of malignancy) cases given the vast diversity of mammographic images?"  

 Machine learning theory (see, for instance, (20, 21, 22, 23, and 24)) addresses, among other issues, 

the problem of concept learning.  It has been shown that there are relatively simple concepts that no 

algorithm is capable of learning in a reasonable amount of time (i.e., in polynomial time).  The Probably 

Approximately Correct  (PAC ) learning theory, as introduced by Valiant in (25) (see also (26, and 27)), 

provides a popular model of learnability.  The central idea of the PAC model is that successful learning of 

an unknown target concept should entail obtaining, with high probability, a hypothesis that is a good 

approximation of the target concept (hence the term probably approximately correct).  

 The machine learning literature provides a plethora of families of relatively simple concepts which 
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cannot be learned reliably in this sense (please see also the previous references).  Therefore, the question of 

reliability is among the most fundamental questions of scientific rigor and practical AI applicability to 

mammographic diagnosis.  In this study we explore the two key questions:  (i) "Are accessible and relatively 

small samples sufficiently representative for learning?"  and  (ii) "how can a broad range of mammographic 

features be evaluated?" 

 

3.   The Representation / Narrow Vicinity Hypothesis 

 The problems of the sample/space ratio and the sample/population ratio reliability criteria are part 

of a general problem of many pattern recognition techniques.  Pattern recognition techniques such as neural 

networks, methods based on logical formulae, decision trees, etc., generalize from prototypes (i.e., training 

sets).  That is, these techniques propose methods that can discriminate new cases which were not among the 

prototypes (training cases).  A common fundamental hypothesis, supporting small samples in pattern 

recognition, is the hypothesis that a small sample is representative of the entire population.  This 

representation hypothesis is well stated by Miller, et al. in (28, p. 462) as follows:  "The training data 

must still form a representative  sample of the set of all possible inputs if the network is to perform 

correctly".  The same authors also suggested that:  "The principal problems which must be addressed when 

producing a complete network application are:  collecting and classifying sufficient training and testing 

data, choosing a valid data presentation strategy and an appropriate network architecture."  Thus, without 

confirming the representation hypothesis as it applies to mammography, pattern recognition with small 

samples may be of questionable reliability.  In addressing this issue we study a restrictive version of the 

representation hypothesis, namely the hypothesis of narrow vicinity (or the NV hypothesis): 

  All real possible cases are in a narrow vicinity of an accessible small training sample.  

 If the NV hypothesis can be accepted, then we may generalize the training sample (of S vectors) to 

the actual population (of P vectors), but not to the remaining (N - P) vectors, which do not represent feasible 

cases anyway.  More formally, the NV hypothesis indicates that the P/N ratio is very small, i.e. the size of 

the actual population P is significantly less than the size of the state space N.  If for example, S = 80, P = 

160 and N = 2,048, then the ratio P/N is equal to 0.078.  Also, the index of the actual reliability S/P (= 0.50) 

is significantly greater than the index of potential reliability S/N (= 0.039).  Therefore, the NV hypothesis 

provides the grounds to generalize from a small training subset.  In Appendix II we describe some methods 

which can allow one to estimate the P/N, S/N, and S/P ratios without having the actual population for some 

typical mammographic and clinical features. 
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 Figure 1. Comparison of the actual and computed borders between diagnostic classes. 

 

 

 The problem of narrow vicinity is graphically illustrated in Figure 1.  This figure shows the areas 

(i.e., the narrow vicinities) surrounding the points that were used to train a hypothetical CAD system. The 

small ovals and rectangles represent test cases from the "not cancer" and "cancer" diagnostic classes, 

respectively.  Next, suppose that the actual border line is the thick line near the "not cancer" training data 

and that linear discriminant analysis provided the dashed line.  Then, the dotted rectangles will be 

misclassified by the estimated discriminant line.  This illustrative example indicates that the extrapolation of 

training cases which are far from their narrow vicinities may lead to dramatically inaccurate conclusions.  

 Our concerns about insufficient training data and the violation of the narrow vicinity hypothesis 

were confirmed for our actual data set.  We used 156 actual cases, of which 77 were malignant, and 79 were 
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benign, provided to us by the Woman's Hospital in Baton Rouge, LA, U.S.A. in 1995.  The cases were 

defined on the 11 attributes of clustered calcifications with the diagnostic classes "malignant" and "benign" 

as described in Appendix I.  A raw version of this data set can be found in our web page with URL: 

http://www.imse.lsu.edu/vangelis/.  We analyzed these data by using Fisher's linear discriminant analysis 

(29, 30, and 31).  By using linear discriminant analysis (LDA) one can estimate the line that minimizes the 

misclassification probability (given that this linear combination of the features follow a normal distribution 

and the classes have the same variance-covariance matrix).  For the Woman's Hospital data, the line 

provided by LDA was able to correctly classify only 76% of the 156 cases.  That is, a significant portion of 

the malignant cases were classified as benign and vice-versa.  Note that the discriminant analysis framework 

is not capable of handling much more complex classification systems.  For example, if the variance-

covariance matrices are unequal, then the classification rule becomes quadratic and can lead to some strange 

results in dimensions higher than 2.  This situation indicates the need for an entirely new framework of 

assumptions. 

 The classification patterns should be derived from the narrow vicinities of the available points. 

However, if one focuses only on the narrow vicinities of the available points, then there is a possibility to 

have too few data points and thus the derived results may not be statistically significant on an 11 

dimensional space.  These observations are in direct agreement with the sample/population space (S/P) ratio 

problem discussed earlier.  Furthermore, this brief analysis indicates the need for developing new inference 

approaches capable of dealing with the previous methodological weaknesses, such as wrongly extrapolating 

outside the observed points. 

 

4.  Some Computational Results 

 Due to the space limitation and level of detail, we do not describe all the steps of the applied 

method, which is based on mathematical logic.  A detailed description of the proposed method, and the 

specific steps, can be found in (32, 33, and 34).  This method of logical analysis is also briefly described in 

Appendix II.  At first, let us note that the previous percentages of 78% and 22% of "cancer" and "not 

cancer" cases, respectively, are close to the actual percentages given in section 2.  About 80% of all 

possibilities in the state space indicate suspicion for cancer and recommendation for biopsy/short term 

follow-up.  A more detailed analysis has also shown that the borders of the biopsy/non-biopsy regions are 

near the bottom of the state space (i.e., close to the vector containing all zeros).  

 We have found that our state space, as defined on the 11 binary diagnostic features, consists of  
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7.42% of  possible cases (binary vectors) for which "biopsy/short term follow-up is not necessary", and 

92.58%  of the vectors for which "biopsy/short term follow-up is necessary."  Similarly, this state space 

consists of 86.7% "highly suspicious for malignancy" cases and 13.3% of "not highly suspicious for 

malignancy" cases (see also Table 1).  

 

 
 Table 1.  Comparison of sample and class sizes for biopsy and cancer 
 (from Woman's Hospital in Baton Rouge, LA, unpublished data, 1995). 
 

  Sample Size  Class Size in 
 State Space 

 Sample/Space 
 Ratio 

  Total size 15,000 2,048 7.32 

  Cases with Cancer 34 1,775 0.02 

         Percent (%) 0.20 86.70  

  Cases without Cancer 14,966 273 54.82 

         Percent (%) 99.80 13.30  

  Number of Biopsies 165 1,896 0.09 

         Percent (%)  1.10 92.58  

  Number of non-Biopsies 14,835 152 97.60 

         Percent (%)  98.90 7.42  

 



 

 
 
 11 

 

   Figure 2.  Relations between biopsy class size and sample.  
 

 
 
 Figure 3.  Relations between cancer class size and sample.  
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 In order to understand the actual implications of the above issues one needs to consider the 

information derived by using actual historic cases.  Suppose that one wishes to determine the above borders 

and percentages by using some sampled data S, which include cases of all examined patients at a hospital 

during a single year.  At the Woman's Hospital of Baton Rouge, LA, (unpublished data, 1995) there are 

15,000 new cases with complete data each year.  Approximately, 0.2% of these patients have cancer and 

98.8% have no cancer.  Approximately, 1.1% of these 15,000 women will undergo biopsy/short term 

follow-up while the remaining 98.9% will receive routine follow-up.  

 The situation in the state space is almost the reverse of the real life situation found in the  Woman's 

Hospital experience, namely 0.2% and 99.8%.  These numbers indicate that in a population of 15,000 

mammograms we will have just 34 cases with cancer.  Let us take this sample to discriminate 1,775 vectors 

representing suspicious findings (i.e., 86.7% of the total vectors) and the remaining 13.3% (i.e., 273 vectors) 

suggestive of benign lesions.  Here the ratio sample/space (S/N) for cancer is equal to 34/1,775 = 0.019 (i.e., 

1.9%) and for not cancer we have a ratio of 15,000/273 = 54.94 (i.e., 5,495%).  Thus, we have a large 

surplus sample of patterns which are not representative of cancer and a very small sample representing 

highly suspicious findings indicating the presence of cancer (see also Table 1 and Figures 2 and 3).  

Moreover, 1.9% is an upper estimate for the S/N ratio because different cases can be represented by the 

same combination of features.  

 The analysis presented in Figures 2 and 3 shows that, in general, the narrow vicinity (NV) 

hypothesis is not valid for mammographic evaluation.  Recall, that this is exactly the hypothesis implicitly 

used by all traditional pattern recognition methods in breast cancer diagnosis!  The diagnostic parameters 

which we used are typical for mammographic diagnosis (13).  

 The introduction of digital mammography has spawned a great deal of research in artificial 

intelligence techniques applied to breast cancer diagnosis.  These methods range from K-nearest neighbor 

rules (e.g., (35)) the application of genetic algorithms (GAs) (e.g., (36)).  However, the majority of these 

studies are concerned with the application of neural networks to extract features and classify tumors.  For 

some recent developments in this particular area the interested reader may want to consult with the work 

reported in (38, 39, and 40).  
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5. Concluding Remarks 

 This study shows that the development of reliable CAD methods for breast cancer diagnosis 

requires more attention on the problem of the selection of training and testing data and processing methods. 

 Strictly speaking all CAD methods are still very unreliable in spite of the apparent, and possibly fortuitous, 

high accuracy of cancer diagnosis reported in the literature.  Our computations clearly show that a standard 

random selection of test cases (13) does not give a true picture of accuracy / reliability of breast cancer 

diagnosis.  The receiver operator characteristic (ROC)-based analysis (see, for instance, (41, 42, 43 and 12)) 

used to evaluate the accuracy of diagnosis suffers from this weakness. 

 There are several approaches and methods which can be used to improve this situation (some of 

them were used in this study).  Nevertheless, the low reliability of CAD should be recognized by the 

scientific community and their application should be reconsidered.  It should be emphasized here that the 

problem is not only in the methods themselves.  Not only they are implemented in situations where they are 

inappropriate but they also provide a false sense of security since the literature tends to inflate their 

reliability.  Reliable diagnosis can be obtained if:  

 
 (a)  research on the feature space has shown that the chosen training data actually represent the 

border between diagnostic classes and 
 
 (b)  the mathematical method to be used can extract this border.   
 

 The main advantage of the methods which we used is that they allow one to identify and evaluate 

the reliability of CAD methods.  Standard random selection of test cases often does not adequately represent 

the critical border points (see also Figure 1).  The proposed approach allows one to select test cases near the 

border of diagnostic classes, i.e. critical points for verifying those cases that are regarded as borderline 

benign/malignant cases.  The last and most important point is that the applied method can improve gains in 

accuracy and construct reliable diagnostic (discriminant) functions. In summary, this paper focused on the 

following 4 main issues related to computerized breast cancer diagnosis: 
 
 (i) The state space of all possible features may be astronomically large, and as a result, the size 

of the population (which is a subset of the state space) may be of the same magnitude. 
 
 (ii) Most samples represent a tiny fraction of the possible population space.  Therefore, results 

obtained by traditional approaches, although might be correct on some test cases, are not 
statistically significant, unless the representation / narrow vicinity (NV) hypothesis is 
accepted. 

 
 (iii) The representation / narrow vicinity (NV) hypothesis may not always be valid. 
 
 (iv) Fortunately, real life data may exhibit the monotonicity property.  Approaches which 
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explicitly use this critical property may alleviate some of the previous problems.  The 
approach proposed by the authors in previous papers and which uses the monotonicity 
property, may offer an effective and efficient way in overcoming these reliability problems. 

 

 Finally, it should be stated that we used the paradigm of breast cancer diagnosis because it is a 

socially and medically critical subject and because it possesses important characteristics that require a 

critical appraisal of the reliability issue in a real life situation. 
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 APPENDIX I 

 DEFINITIONS OF THE KEY FEATURES 

 

 The main study described in this paper was performed for the binary features presented below.  We 

deliberately used non-specific terms, such as "small", "large", "pro cancer", and "contra cancer" in order to 

allow us to further refine the language.  An approach which uses non-binary values and which is based on 

fuzzy logic is described in (44).   

 
The list of indirect diagnostic features, along with their meaning, are defined as follows:  
 
 x1 -- Amount and volume of calcifications    (0-contra cancer/ biopsy; 
           1-pro cancer/ biopsy).  
  
Note, that x1 was considered to be a function ø(w1,w2,w3) of the features w1, w2, w3 defined as follows:  
 w1 -- Number of calcifications/cm2    (1- large, 0-small) 
 w2 -- Volume, cm3 (approximate)    (1- small, 0-large) 
 w3 -- Total number of calcifications    (1-large,0-small) 
 
 
 x2 --   Shape and density of calcifications    (0-contra cancer/biopsy; 
          1-pro cancer/ biopsy). 
 
Note, that we consider x2 as a function  ø(y1,y2,y3,y4,y5) of y1, y2, y3, y4, y5, which are determined as follows: 
 y1 -- Irregularity in the shape of individual calcifications (1- marked, 0-mild) 
 y2 -- Variation in the shape of calcifications   (1- marked; 0-mild)  
 y3 --   Variation in the size of calcifications     (1- marked; 0-mild)  
 y4 --   Variation in the density of calcifications  (1- marked; 0-mild)  
 y5 --   Density of the calcifications    (1- marked; 0-mild)  
 
 x3 --   Ductal orientation     (0-not ductal; 1-ductal)  
 x4 --   Comparison with previous exam   (0-contra cancer/biopsy; 
          1- pro cancer/biopsy) 
 x5 --   Associated findings     (0-contra cancer/biopsy; 
          1-pro cancer/biopsy)  
 
 

Thus, we used the state space consisted of the  11  binary features w1, w2, w3, y1, y2, y3, y4, y5, x3, x4, x5.  

Features  x1  and  x2  were used to construct a hierarchy of features, as described in Appendix II.  
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 APPENDIX II 

 TECHNICAL PROCEDURES 

 

I.1 The Interactive Approach 

 Let us consider how one can validate the narrow vicinity (NV) hypothesis when a small sample set 

is available. If one has a large sample set available, then he/she does not need the NV hypothesis. On the 

other hand, with a small sample, one does not have to directly validate this hypothesis.  We developed a new 

methodology to overcome these difficulties.  The main idea is to extend insufficient clinical cases with 

information from an experienced radiologist.  Another approach is mentioned in (28, p.462):  "One obvious 

solution to the problem of restricted training and testing data is to create simulated data using either a 

computer based or physical model."  We used experienced experts as a "human" model to generate new 

examples.  

  One can ask a radiologist to evaluate a particular case when a number of features take on a set of 

specific values.  A typical query in our experiments had the following format: 

 "If feature 1 has value V1, feature 2 has value V2, ..., feature n has value Vn, then should 

biopsy/short term follow-up be recommended or not?    

 Or, does the above setting of values correspond to a highly suspicious case or not?"   

The above queries can be defined with artificially constructed vectors (as will be explained below) or with 

artificially generated new mammograms by modifying existing ones.  In this way one may increase a sample 

size but not as much as may be necessary.  Roughly speaking, the technical weakness now is the same as 

before.  That is, it is practically impossible to ask a radiologist to generate many thousands of artificial 

mammographic cases.  

 One can overcome these difficulties in two ways.  First, if the features can be organized in a 

hierarchical manner, then a proper exploitation of this structure can lead to a significant reduction of the 

needed queries.  Second, if the property of monotonicity, as explained below, is applicable, then the 

available data can be generalized to cover a larger training sample.  The specific mathematical steps of how 

to achieve the above two goals are best described in (33, and 34).  

 At this point it should be stated that the issue of monotonicity in Boolean functions has been studied 

extensively by Hansel (45).  Hansel proposed what has become a famous theorem on the worst case 

complexity of learning monotone Boolean functions.  However, his theorem has not been translated into 

English until recently when the authors discussed monotonicity in (32, 33, 34, and 46).  However, there are 
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numerous references to it in the non-English literature (Hansel wrote his paper in French).  This theorem is 

one of the finest results of the long term efforts in monotone Boolean functions that begun with Dedekind in 

1897 (47). 

 

II.2 The Hierarchical Approach 

 One can construct a hierarchy of medically interpretable features from a very generalized level to a 

less generalized level.  For example, we considered the generalized binary feature "Shape and density of 

calcification" with grades (0-"contra cancer" and 1-"pro cancer") denoted by x2.  On the second level we 

considered the feature x2 to be some function ø of five other features:  y1, y2, ..., y5. That is, x1 = ø(y1,y2, 

...,y5), where:  

  y1-- Irregularity in the shape of the individual calcifications   

  y2-- Variation in the shape of the calcifications 

  y3-- Variation in the size of the calcifications 

  y4-- Variation in the density of the calcifications  

  y5-- Density of the calcifications.  

For illustrative purposes we will consider the above features as being binary valued with grades:  (1) for 

"marked" and (0) for "minimal" or, equivalently (1)-"pro cancer" and (0)-"contra cancer". 

 

II.3 The Monotonicity Property 

 If we can identify regularities in advance, then it is possible to decrease the number of calls to a 

radiologist required to classify (diagnose) particular vectors (clinical cases).  Monotonicity is one such 

regularity and it may greatly reduce the number of diagnoses while maintaining a general hypothesis 

because many non-monotone regularities can also be represented as a combination of several monotone 

regularities (32, 33, and 34). 

 In order to clarify how the monotonicity property can be applied to the breast cancer diagnosis 

problem consider the evaluation of calcifications in a mammogram.  For simplicity and illustrative purposes 

assume that x1 is the number and the volume occupied by calcifications, in a binary setting, as follows:  

(0-"contra cancer", 1-"pro cancer").  Similarly, let: 

 
  x2--{shape and the density of the calcifications}, with values:  0-"contra cancer",  
          1-pro cancer", 
   x3--{ductal orientation}, with values:     0-"contra cancer", 
          1-"pro cancer", 
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  x4--{comparison with previous examination}, with values:    0-"contra cancer", 
           1-"pro cancer", 
 and  x5--{associated findings}, with values:     0-"contra cancer", 
           1-"pro cancer".  

 

   Given the above definitions we can represent clinical cases in terms of binary vectors with these 

five features as: (x1,x2,x3,x4,x5).  Next consider the two clinical cases which are represented by the two binary 

vectors: (10100) and (10110).  The vector (10100) means that the number and the volume occupied by 

calcifications is "pro cancer" (e.g., x1 = 1) and ductal orientation is "pro cancer" (e.g., x3 = 1) for the first 

case.  The vector (10110) shows an extra "pro cancer" feature for the second case, i.e.,  the comparison with 

the previous examination is "pro cancer" (i.e., x4 = 1). 

 If a radiologist correctly diagnosed the first clinical case (10100) as malignant, then we can also 

conclude that the second clinical case (10110) should also be malignant.  The latter case has all the "pro 

cancer" features of the first case plus an extra one (i.e., x4 = 1).  In a similar manner, if we know that 

(01010) is not considered suspicious for cancer, then the second case (00000) should not be considered 

suspicious for cancer.  This is true because the second case has all the "contra cancer" characteristics as the 

former one in addition to other "contra cancer" characteristics.  These examples roughly illustrate the 

property of monotonicity in Boolean functions and indicate how our algorithms explicitly exploit 

monotonicity.  One can combine a hierarchical approach with monotonicity and generalize accordingly.  In 

this way, weaknesses of the traditional pattern recognition methods can be alleviated.  

 

II.4 Logical Discriminant Functions 

 In (33, and 34) we show that by using the idea described above, then the monotone Boolean 

discriminant functions for the features on the uppermost level of the hierarchy are as follows: 

 For the "biopsy/short term follow-up" sub-problem: 

  f1(x) = x2x4wx1x2wx1x4wx3wx5.  (1) 

 Similarly, for the second sub-problem (i.e., "highly suspicious for cancer") the extracted function 

was:  

  f2(x) = x1x2wx3w(x2wx1wx4)x5.  (2) 

 Regarding the second level of the hierarchy (which recall has 11 binary features) we interactively 

constructed the following functions (an interpretation of the features is presented in Appendix I): 

  x1 = n(w1,w2,w3) = w2 w w1w3, (3) 

   and x2 = ø(y1,y2,y3,y4,y5) = y1wy2wy3y4y5.  (4) 

By combining the functions in (1)-(4) we obtained the formulas of all the 11  features for "biopsy/short term 



 

 
 
 23 

follow-up": 

  f1(x) = (y2wy1wy3y4y5)x4w(w2ww1w3)(y2wy1wy3y4y5)w(w2ww1w3)x4wx3wx5.  (5) 

and for highly suspicious for cancer:  

        f2(x) = x1x2wx3w(x2wx1wx4)x5 =  

         = (w2ww1w3)(y1wy2wy3y4y5)wx3w(y1wy2wy3y4y5)w(w2ww1w3wx4)x5.   (6) 

 The benefit of having these functions is twofold.  First, they express patterns as logical expressions 

(i.e., as decision rules) which can allow to identify the real border between diagnostic classes.  Second, they 

allowed us to compute the size of the classes presented in Table 1 and depicted in Figures 2 and 3.  

 

 


