
  149

Chapter 4 1 

DISCOVERING RULES THAT GOVERN 
MONOTONE PHENOMENA 
 
Vetle I. Torvik * and Evangelos Triantaphyllou ** 
*:University of Illinois at Chicago, Dept. of Psychiatry, 1601 W Taylor St, Chicago, IL 60612 
     Email: vtorvik@uic.edu; Web: http://arrowsmith2.psych.uic.edu/torvik 
**: Louisiana State Univeristy, Dept. of Computer Science, 298 Coates Hall, Baton Rouge, 
    LA 70803,   Email: trianta@lsu.edu; Web: http://www.csc.lsu.edu/trianta 
  
Abstract: Unlocking the mystery of natural phenomena is a universal objective in 

scientific research. The rules governing a phenomenon can most often be 
learned by observing it under a sufficiently large number of conditions that are 
sufficiently high in resolution. The general knowledge discovery process is not 
always easy or efficient, and even if knowledge is produced it may be hard to 
understand, interpret, validate, remember, and use. Monotonicity is a 
pervasive property in nature: it applies when each predictor variable has a non-
negative effect on the phenomenon under study.  Due to the monotonicity 
property, being able to observe the phenomenon under specifically selected 
conditions may increase the accuracy and completeness of the knowledge at a 
faster rate than a passive observer who may not receive the pieces relevant to 
the puzzle soon enough. This scenario can be thought of as learning by 
successively submitting queries to an oracle which responds with a Boolean 
value (phenomenon is present or absent). In practice, the oracle may take the 
shape of a human expert, or it may be the outcome of performing tasks such as 
running experiments or searching large databases. Our main goal is to pinpoint 
the queries that minimize the total number of queries used to completely 
reconstruct all of the underlying rules defined on a given finite set of 
observable conditions V = {0,1}n. We summarize the optimal query selections 
in the simple form of selection criteria, which are near optimal and only take 
polynomial time (in the number of conditions) to compute. Extensive unbiased 
empirical results show that the proposed selection criterion approach is far 
superior to any of the existing methods. In fact, the average number of queries 
is reduced exponentially in the number of variables n and more than 
exponentially in the oracle’s error rate.  

Key Words: Monotone Boolean Functions, Active Learning, Data Mining. 

                                                      
1 Triantaphyllou, E. and G. Felici (Eds.),  Data Mining and Knowledge Discovery 

Approaches Based on Rule Induction Techniques, Massive Computing Series,  
Springer, Heidelberg, Germany, pp. 149-192, 2005. 

 



150 Data Mining & Knowledge Discovery Based on Rule Induction

1. INTRODUCTION

The process of extracting new knowledge from large amounts of data is
often called Knowledge Discovery or Data Mining. The general knowledge
discovery process is not always easy or efficient, and even if knowledge is
produced it may he hard to understand, interpret, validate, remember, and use.
This chapter addresses the problem of learning monotone Boolean functions
with the underlying objective to efficiently acquire simple and intuitive
knowledge that can be validated and has a general representation power. The
following key properties strengthen the argument in favor of this objective:

Key Property 1: Monotone Boolean functions are inherently frequent in
applications.

The following three examples illustrate the versatility of the monotonicity
property and how it applies to practical situations. A) Suppose a computer tends
to crash when it runs a particular word processor and web browser
simultaneously. Then, the computer will probably crash if it, in addition, runs
other software applications. Further, suppose this computer does not tend to
crash when it runs a particular CD player and web browser simultaneously.
Then, it will probably not crash when it only runs the web browser (or the CD
player). B) If a keyword search in a database gives interesting hits, then hits for
a proper superset of these keywords is also probably going to be interesting. On
the other hand, if a keyword search in a database does not give interesting hits,
then hits for a proper subset of these keywords is probably not going to be
interesting either. C) With all other factors constant, a student with a high
Grade Point Average (GPA) is more likely to be accepted into a particular
college than a student with a low GPA.

Recent literature contains a plethora of phenomena that can be modeled by
using monotone Boolean functions. Such diverse phenomena include, but are
not limited to, social worker’s decisions, lecturer evaluation and employee
selection (Ben-David, 1992), chemical carcinogenicity, tax auditing and real
estate valuation (Boros et al., 1994), breast cancer diagnosis and engineering
reliability (Kovalerchuk et al., 1996), signal processing (Shmulevich, 1997),
rheumatology (Bloch and Silverman, 1997), voting rules in the social sciences
(Judson, 1999), financial systems (Kovalerchuk and Vityaev, 2000b), record
linkage (in administrative databases (Judson, 2001), and in bibliographic
databases (Torvik et al., 2004)).

Key Property 2: Monotone Boolean functions are simple and intuitive.



151Chapter 4:  Discovering Rules that Govern Monotone Phenomena

This property is perhaps the most important one when human interaction is
involved since people tend to make very good use of knowledge they can easily
interpret, understand, validate, and remember. Due to the increasing
computational efficiency and storage capacity, the recent trend has been to
increase the knowledge representation power in order to capture more complex
knowledge. For example, the popular neural networks are capable of
representing very complex knowledge. Unfortunately, even small neural
networks can be hard to interpret and validate.

Key Property 3: Monotone Boolean functions can represent relatively complex
knowledge and still be validated.

Validating knowledge that is generalized from a set of specific observations,
which may be noisy and incomplete, is based on philosophical arguments and
assumptions. Traditional statistical approaches tend to require specific
modeling in small dimensions, to gain a theoretical justification for the final
model. This justification is obtained at the cost of eliminating the computational
feasibility of learning higher dimensional rules. On the other hand, the more
general the knowledge representation is, the more one tends to lose the handle
on its validation.

In practice, a great deal of time and effort is put into the knowledge
discovery process. Software applications are tested, diseases are researched,
database search engines are trained to be intelligent, and so on. The inference
process generally involves gathering and analyzing data. Gathering the data
often involves some sort of labor that far outweighs the computations used to
analyze the data in terms of cost. Therefore, the main objective in this chapter
is to minimize the labor associated with gathering the data, as long as it is
computationally feasible.

Monotone Boolean functions lay the ground for a simple and efficient
question asking strategy, where it may be easy to pinpoint questions whose
answers make incomplete knowledge more general or stochastic knowledge
more accurate. Due to the underlying monotonicity property, this learning
strategy may significantly increase the learning rate, as an unguided learner
might not receive the relevant pieces of information early enough in the
inference process. Therefore, it is highly desirable not only to be able to pose
questions, but also to pose “smart” questions. The main problem addressed in
this chapter is how to identify these “smart” questions in order to efficiently
infer monotone Boolean functions. This chapter focuses on the case when the
monotone Boolean functions are defined on the set of n-dimensional Boolean
vectors {0,1}n. This does not necessarily limit the application domain as the
methodology developed in this chapter can be applied to any finite set of
vectors V d ún, and any monotone function can be represented by a set of
monotone Boolean functions. 

This chapter is organized as follows: The background information and the



152 Data Mining & Knowledge Discovery Based on Rule Induction

relevant literature is reviewed in section 2. Formal definitions of the problems
and their solution methodology are given in section 3. In section 4,
experimental  results are provided, for which a summary and discussion is
given in section 5. Section 6 concludes the paper with a few final remarks. 

2. BACKGROUND INFORMATION 

2.1 Problem Descriptions

Let V denote a finite set of vectors defined on n variables. A vector v 0 V is
said to precede another vector w 0 V, denoted by v ˜ w, if and only if (iff) vi #
wi for I = 1, 2, ..., n. Here, vi and wi denote the I-th element of vectors v and w,
respectively. Similarly, a vector v 0 V is said to succeed another vector w 0 V,
iff vi $ wi for I = 1, 2, ..., n. When v precedes (or succeeds) w, and the two
vectors are distinct (i.e., v …w), then the vector v is said to strictly precede (or
strictly succeed, respectively) w, denoted by v ™w (or v —w, respectively). If a
vector v either precedes or succeeds w, they are said to be related or
comparable. A Boolean function defined on the set of vectors {0,1}n is simply
a mapping to {0,1}. A monotone Boolean function f is called non-decreasing
iff f(v) # f(w) œ v, w 0{0,1}n : v ˜ w, and non-increasing iff f(v) $ f(w) œ v, w
0{0,1}n : v ˜ w. This chapter focuses on non-decreasing functions, which are
referred to as just monotone, as analogous results hold for non-increasing
functions. 

Monotone Boolean functions lay the ground for a simple question asking
strategy, which forms the basis of this chapter. More specifically, the problem
of inferring monotone Boolean functions by successive and systematic function
evaluations (membership queries submitted to an oracle) is addressed. The
monotone Boolean function can be thought of as a phenomenon, such as breast
cancer or a computer crash, together with a set of predictor variables. The
oracle can be thought of as an entity that knows the underlying monotone
Boolean function and provides a Boolean function value in response to each
membership query. In practice, it may take the shape of a human expert, or it
may be the outcome of performing tasks such as running experiments or
searching large databases.

This inference problem is broken down by the nature of the oracle: whether
it is deterministic or stochastic, and whether it is two-valued or three-valued.
The simplest variant considers the guided inference of a deterministic monotone
Boolean function defined on at most n Boolean variables. This case is referred
to as Problem 1 which is generalized into two different problems. The first
generalization includes a pair of nested monotone Boolean functions and is
referred to as Problem 2. Since this problem includes two oracles, it is further
broken down into three subproblems 2.1, 2.2, and 2.3, differing only in the



153Chapter 4:  Discovering Rules that Govern Monotone Phenomena

manner in which these two oracles are accessed. The second generalization
includes stochastic membership queries and is referred to as Problem 3.

Problem 1: Inferring a Monotone Boolean Function from a Deterministic
Oracle 

Initially, the entire set of 2n Boolean vectors {0,1}n is considered to be
unclassified. That is, the values of the underlying monotone Boolean function
f are all unknown and may be 0 or 1. A vector v is then selected from the set of
unclassified vectors U and is submitted to an oracle as a membership query.
After the vector’s function value f(v) is provided by the oracle, the set of
unclassified vectors is reduced according to the following monotonicity
constraints:  f(w) = 0, œ w 0 U: w ˜ v, when f(v) = 0, or the following
monotonicity constraints: f(w) = 1, œ w 0 U: v ˜ w, when f(v) = 1. Here, the
relationship v ˜ w holds if and only if vi # wi, for I = 1, 2, ..., n, where vi and wi
denote the I-th Boolean elements of the vectors v and w, respectively. Vectors
are then repeatedly selected from the unclassified set until they are all classified
(i.e., U = {}). Given the classification of any unclassified vector, other vectors
may be concurrently classified if the underlying Boolean function is assumed
to be monotone. Therefore, only a subset of the 2n vectors need to be evaluated
in order to completely reconstruct the underlying function. Thus, a key problem
is to select “promising” vectors so as to reduce the total number of queries (or
query complexity).

Problem 2: Inferring a Pair of Nested Monotone Boolean Functions from
Deterministic Oracle(s)

A pair of monotone Boolean functions f1 and f2 are called nested when the
following relationship holds:  f1(v) $ f2(v) (or f1(v) # f2(v)) œ v 0 {0,1}n. The
case when f1 $ f2 is addressed in this chapter as analogous results hold for the
case when f1 # f2. A single monotone Boolean function does not capture the
idea of a classification intermediate to 0 and 1. However, a pair of nested
monotone Boolean functions can do so. For example, some vectors might
belong to a class with a high probability (i.e., where f1 = 1 and f2 = 1), and some
might belong to the other class with a high probability (i.e., where f1 = 0 and f2
= 0). Other instances might not be classifiable with a satisfactorily high
probability. A pair of nested monotone Boolean functions allows for this
intermediate classification (i.e., where f1 = 1 and f2 = 0) to be incorporated. This
makes the monotone Boolean function model more powerful.

Since the inference of a pair of nested monotone Boolean functions may
include two oracles, it is further broken down into three subproblems 2.1, 2.2,
and 2.3, differing only in the manner in which the oracle(s) are accessed. These
three problems were defined to capture the main inference scenarios that may
arise in real world applications.

Problem 2.1: Sequentially Inferring Nested Functions from Two Oracles



154 Data Mining & Knowledge Discovery Based on Rule Induction

For this problem the two functions are considered to be available via their
two respective oracles where the inference situation dictates that, for example,
function f1 should be completely reconstructed before the inference of function
f2 begins.  In other words, the two functions are to be sequentially inferred. This
approach may simply be the only feasible or reasonable one or it may be
dictated by the cost of querying the oracle associated with f2 far surpassing the
cost of querying the other oracle.

Problem 2.2: Inferring Nested Functions from a Three-Valued Oracle
For this problem the two nested monotone Boolean functions are viewed as

a single function f taking on the three values 0, 1, and 2, corresponding to (f1,
f2) = (0,0), (1,0) and (1,1), respectively. Notice that (f1, f2) cannot take on the
values (0,1) due to the nestedness constraint f1 $ f2. The single three-valued
function is used to emphasize that the Boolean function values arrive in pairs,
for each vector, from a single oracle.

Problem 2.3: Inferring Nested Functions from Two Unrestricted Oracles
This problem is similar to Problem 2.1, in that two oracles are queried

separately.  Unlike Problem 2.1, no restrictions are put on the manner in which
the two oracles are queried. At each inference step, a vector can be submitted
to either of the two oracles.  In this sense, this is the least restrictive of the three
problems, and it is therefore expected that this approach will be the more
efficient.

Problem 3: Inferring a Monotone Boolean Function from a Stochastic
Oracle 

This problem is identical to Problem 1, except that the membership values
are now stochastic in nature. As in Problem 1, vectors are selected from {0,1}n

and are submitted to an oracle as membership queries. Unlike Problem 1, it is
assumed that the oracle misclassifies each vector v with an unknown probability
q(v) 0 (0, ½). That is, for a given monotone Boolean function f, the oracle
returns 1 for vector v with probability p(v) = q(v)×(1- f(v)) + (1- q(v))×f(v), and
it returns 0 with probability 1- p(v). It is assumed that the oracle is not
misleading the inference process and is better at classifying the vectors than
completely random guessing, hence the oracle’s misclassification probability
is assumed to be less than one half.

The stochastic inference problem involves estimating the misclassification
parameter q(v) for each vector v, as well as reconstructing the underlying
function f. In this chapter, these two tasks are based on a maximum likelihood
framework. A monotone Boolean function that is the most likely to match the
underlying function, given the observed queries, is referred to as the inferred
function and is denoted by f*. Associated with a function f* are the estimated
misclassification probabilities which are denoted by q*(v) for each vector v.

The inference process consists of two steps that are repeated successively.



155Chapter 4:  Discovering Rules that Govern Monotone Phenomena

In the first step, a vector is submitted to the oracle as a query. After a vector’s
function value is provided by the oracle, both q* (v) and f* may have to be
updated, according to the following monotonicity property: p(v) # p(w) if and
only if v ˜ w, œ v, w 0{0,1}n. These two steps are repeated until the likelihood
of the inferred function f* matching the underlying function f is high relative
to the likelihood of any of the other monotone Boolean functions matching f.
In other words, the underlying function is considered completely inferred when
the maximum likelihood ratio for the inferred function, denoted by 8(f*),
reaches a value that is close to 1. Again, the key problem is to select
“promising” vectors so as to reduce the total number of queries required in this
process.

2.2 Hierarchical Decomposition of Variables

In some applications, the variables may be monotone Boolean functions
defined on a set of Boolean variables at a lower level. Kovalerchuk et al. (1996)
decomposed five breast cancer diagnostic variables in a hierarchical manner as
follows.  Function f1(v) describes their “biopsy subproblem” and is defined as
1 if a biopsy is recommended for a tumor with the features described by vector
v, and 0 otherwise.  Function f2(v) describes their “cancer subproblem” and is
defined as 1 if a tumor with the features described by v is highly suspicious for
malignancy, and 0 otherwise. The first variable v1 is defined as 1 if the amount
and volume of calcifications is “pro cancer”, and 0 if it is “contra cancer”. In
reality, this variable was inferred (through queries to the radiologist) as the
following monotone Boolean function: v1(x1, x2, x3) = x2 w x1x3. Here, the extra
variables are defined as follows:

x1 = 1 if the number of calcifications/cm2 is “large”, 0 if “small”, 
x2 = 1 if the volume of calcifications (cm3) is “small”, 0 if “large”, and
x3 = 1 if the total number of calcifications is “large”, 0 if “small”.

The second variable v2 is defined as 1 if the shape and density of
calcifications is “pro cancer”, and 0 if it is “contra cancer”. In reality, this
variable was inferred (through queries to the radiologist) as the following
monotone Boolean function: v2(x4, x5, x6, x7, x8) = x4 w x5 w x6x7x8. Here, the
extra variables are defined as follows:

x4 = 1 if the irregularity in the shape of individual calcifications is 
“marked”, 0 if “mild”,

x5 = 1 if the variation in the shape of calcifications is “marked”, 0 if “mild”,
x6 = 1 if the variation in the size of calcifications is “marked”, 0 if “mild”,
x7 = 1 if the variation in the density of calcifications is “marked”, 0 if 

“mild”, and



156 Data Mining & Knowledge Discovery Based on Rule Induction

Figure 1. Hierarchical Decomposition of the Breast Cancer
Diagnosis Variables.

x8 = 1 if the density of calcifications is “marked”, 0 if “mild”.

In general, one can construct a hierarchy of the sets of variables, where each
set of variables corresponds to an independent inference problem. Figure 1
shows this hierarchy for the breast cancer diagnostic variables. The upper level
consists of the set {v1, v2, v3, v4, v5} which is linked to the sets of variables {x1,
x2, x3}, and {x4, x5, x6, x7, x8} at the lower level. Here, the variables v1 and v2
have to be defined before the inference problem defined on the set variables {v1,
v2, v3, v4, v5} can begin. In general, the inference problems at the lower level
have to be completed before the inference problems at the upper levels can
begin.

The breast cancer inference problem is defined on the set of Boolean
variables {x1, x2, x3, x4, x5, x6, x7, x8, v3, v4, v5, fi}. This problem includes a total
of 212 = 4,096 vectors to choose from. However, it can be approached
hierarchically, as three independent problems defined on the sets {x1, x2, x3},
{x4, x5, x6, x7, x8}, and {v1, v2, v3, v4, v5, fi}, respectively. These problems include
a total of 23 + 25 + 26 = 104 possible vectors to choose from. The hierarchical
approach to this problem reduces the number of possible vectors to choose from
by a factor of 4,096/104 . 39.4. Please notice that a single monotone Boolean
function is to be inferred for each of the sets {x1, x2, x3}, and {x4, x5, x6, x7, x8}.
This corresponds to Problem 1 defined on the sets {0,1}3 and {0,1}5,
respectively. In contrast, a pair of nested monotone Boolean functions defined
on the set {v1, v2, v3, v4, v5} are to be sequentially inferred. This corresponds to
Problem 2.1 and includes the query domain {0,1}6.

2.3 Some Key Properties of Monotone Boolean 
Functions

An ordered set of related vectors v1 ˜ v2 ˜ ...˜ v p is sometimes called a
chain, while an antichain (or layer) consists of a set of mutually unrelated



157Chapter 4:  Discovering Rules that Govern Monotone Phenomena

1110 1101 01111011

1010 1001 01010110

1000 0100 00010010

1100 0011

1111

0000

Figure 2. The Poset Formed by {0,1}4 and the Relation ˜.

vectors. When a set of vectors is partitioned into as few layers as possible, a
layer partition is formed. Similarly, when a set of vectors is partitioned into as
few chains as possible, a chain partition is formed. For a particular layer
partition, the layers can be ordered as L1, L2, ..., Lr so that a vector vi 0 Li cannot
succeed another vector v j 0 L j, if I < j.  Let {0,1}n denote the set of vectors
defined on n Boolean variables. The layer partition for the set {0,1}n is unique,
while its chain partition is not unique. In fact, the way one partitions {0,1}n into
chains can be used effectively in the inference of monotone Boolean functions.
An example is the symmetric chain partition used by Hansel (1966) and
Sokolov (1982) as described in section 2.4.

A directed graph G is often written in the form (V, E), where V denotes its
set of vertices, and E denotes its set of directed edges. Here, a directed edge
from vertex v to vertex w is written as (v, w). A directed graph (V, E) is called
cyclic if it has a sequence of edges that starts and ends with a vector v: (v, v1),
(v1, v2), ...,(vr ,v) 0 E. Figure 2 shows a partially ordered set (or poset for short).
In general, posets can be formed by a set of vectors V together with the
precedence relation ˜, and are written as (V, ˜). 

A poset can be viewed as a directed graph where each vertex corresponds
to a vector and each directed edge (v, w) represents the precedence relation v ̃
w.  When drawing a poset as a directed graph, its edges’ directions are often
omitted without loss of information. The graph of a poset is acyclic and so all
the directions can be forced upwards on a page by ordering the vertices by
layers, as in Figure 2. Precedence relations that are transitively implied by other
relations are considered redundant. For example, the precedence relation (0000)
˜ (1100) is redundant because it is implied by the two precedence relations
(0000) ˜ (1000) and (1000) ̃  (1100). For the purpose of reducing storage and
simplifying the visualization of posets, redundant precedence relations are



158 Data Mining & Knowledge Discovery Based on Rule Induction

generally omitted, as in Figure 2. 
Two posets P1 and P2 are said to be isomorphic if there exists a one-to-one

mapping of the vectors in P1 to the vectors in P2, where the precedence relations
are preserved. That is, if v1 6 v2 and w1 6 w2, then v1 ˜ w1 iff v2 ˜ w2, œ v1, w1

0 P1 and v2, w2 0 P2. For example, the poset formed by the vectors {0000, 1001,
0100} is isomorphic to the poset formed by the vectors {1110, 1100, 1101}.
Here, one possible isomorphic mapping is as follows: (0000) 6 (1100), (1001)
6 (1110) and (0100) 6 (1101).

A vector v* is called an upper zero of a Boolean function f if f(v*) = 0 and
f(v) = 1 œ v 0 {0,1}n : v ™ v*. Similarly, a vector v* is called a lower unit if
f(v*) = 1 and f(v) = 0 œ v 0 {0,1}n : v — v*. Lower units and upper zeros are also
referred to as border vectors. For any monotone Boolean function f, the set of
lower units LU(f), and the set of upper zeros, UZ(f) are unique and either one
of these two sets uniquely identifies f. Boolean functions are often written in
Disjunctive Normal Form (DNF) or in Conjunctive Normal Form (CNF) using
the AND, OR, and NOT operations, denoted by v, w, and ~, respectively. A
DNF or a CNF representation is minimal if removing any of its clauses results
in a different mapping {0,1}n 6 {0,1}. For any monotone Boolean function f
there is a one-to-one relationship between its lower units and its minimal DNF
representation, as follows:

Similarly, there is a one-to-one relationship between the upper zeros of a
monotone Boolean function f, and its minimal CNF representation as follows:

For example, the monotone Boolean function defined by its lower units {110,
101} can be written in minimal DNF as v1v2 w v1v3. The corresponding upper
zeros are {011, 100} and its minimal CNF representation is v1(v2 w v3). Often
the operation v is omitted when writing out Boolean functions, as in the
previous two examples. Since the lower units and upper zeros are unique to a
monotone Boolean function, so are its minimal representations in DNF and
CNF. Another nice property of monotone Boolean functions is that they can be
written in minimal CNF or DNF without using the NOT operation.

The set of all monotone Boolean functions defined on {0,1}n is denoted by
Mn. For example, the set of all monotone Boolean functions defined on {0,1}2

is given by M2 = {F, v1v2, v1, v2, v1 w v2, T}. Here the functions T and F are
defined by f(v) = 1, œ v 0{0,1}n, and f(v) = 0, œ v 0{0,1}n, respectively.

Let m(f) denote the number of border vectors associated with a Boolean
function f. It is well known (e.g., Engel, 1997) that m(f) achieves its maximum
value for a function that has all its border vectors on two of the most populous
layers of {0,1}n. That is, the following equation holds:



159Chapter 4:  Discovering Rules that Govern Monotone Phenomena

Q(1) = 3, Q(2) = 6, Q(3) = 20 
Q(4) = 168  by Dedekind (1897)
Q(5) = 7,581 by Church (1940)
Q(6) = 7,828,354 by Ward (1946)
Q(7) = 2,414,682,040,998 by Church (1965)
Q(8) = 56,130,437,228,687,557,907,788 by Wiedeman (1991)

Table 1. History of Monotone Boolean Function Enumeration. 

The borders of any monotone Boolean function f are the only vectors that
require evaluations in order to completely reconstruct the function. Therefore,
the value of m(f) works as a lower bound on the number of queries for Problem
1.

The number of monotone Boolean functions defined on {0,1}n is denoted
by Q(n). That is, Q(n) is equal to the dimension of the set Mn. All of the known
values for Q(n) are given in Table 1. For larger values of n the best known
asymptotic is due to Korshunov (1981):

The number of pairs of nested monotone Boolean functions defined on
{0,1}n is simply Q(n+1). This fact can be observed by constructing the poset
connecting two posets P1 = ({0,1}n, ˜) and P2 = ({0,1}n, ˜) associated with
functions f1 and f2 respectively, by adding the edges corresponding to the
precedence relations f1(v) $ f2(v), œ v 0 {0,1}n.

2.4 Existing Approaches to Problem 1

Let n(A, f ) denote the number of queries performed by an algorithm A,
when reconstructing the monotone Boolean function f. A Teacher can be
thought of as an inference algorithm that knows the function ahead of time. It
simply verifies that the function is correct by querying only the border vectors.
Thus, n(Teacher, f ) = m( f ), œ f 0 Mn. Please recall that m( f ) denotes the
number of border vectors associated with a function f. 



160 Data Mining & Knowledge Discovery Based on Rule Induction

For any monotone Boolean function inference algorithm  A,  the value  of
m( f ) can be considered as a lower bound on the number of queries.  Thus, n(A,
f ) $ m( f ), œ f 0 Mn. It turns out that it is possible to achieve fewer or the same
number of queries as the upper bound on m( f ), for all monotone Boolean
functions defined on {0,1}n. This can be achieved by partitioning the set of
vectors into chains as described in Hansel (1966).  In general, there are a total
of chains in n dimensions. An inference algorithm that searches these
chains in increasing length is referred to as Hansel’s algorithm. A key property
of the Hansel chains is that once the function values are known for all the
vectors in all the chains of length k, the function values are unknown for at
most two vectors in each chain of the next length k+2. Proof of this property
can be found in both Hansel (1966) and Sokolov (1982). As a result, Hansel’s
algorithm results in fewer or the same number of queries as the upper bound on
m(f) as follows. When n is odd, the shortest chains contain two vectors each,
and there are a total of chains. In this case, the maximum number of
queries used by Hansel’s algorithm is 2  = . Similarly, when
n is even, there are chains of length one, and chains of length
greater than one. In this case, the maximum number of queries is - +
2 = + . That is, the following inequality holds:

The algorithm described in Sokolov (1982) is also based on the Hansel
chains. In contrast to Hansel’s algorithm, it considers the chains in the reverse
order (i.e., in decreasing length) and performs the binary search within each
chain. It turns out that Sokolov’s algorithm is much more efficient for functions
that have all their border vectors in the longer Hansel chains. As an example,
consider the monotone Boolean function T. This function has only one border
vector (00...0), which is located in the longest chain. For this function,
Sokolov’s algorithm performs at most llog2(n)m + 1 evaluations, while Hansel’s
algorithm needs at least evaluations. For instance, when n = 20 this
translates into at least 184,756 evaluations performed by Hansel’s algorithm
and at most 5 evaluations performed by Sokolov’s algorithm.

Sokolov’s algorithm does not satisfy the upper bound, as the following
example shows. Suppose that n > 4 and even, and the monotone Boolean
function to be inferred is defined by f(v) = 1 œ v 0 {0,1}n : |v| $ n/2, and 0
otherwise. Then the set of border vectors is {v, |v| = n/2 or n/2-1} and m( f ) =

. In Sokolov’s algorithm, the first vector w1 submitted for
evaluation is a border vector since |w1| = n/2. The second vector w2 is not a
border vector because |w2| = j3n/4k … n/2 and n/2-1. Therefore, the following
inequality holds: 

n(Sokolov, f ) > , for at least one f 0 Mn.



161Chapter 4:  Discovering Rules that Govern Monotone Phenomena

In an attempt to provide a unified efficiency testing platform, Gainanov
(1984) proposed to compare inference algorithms based on the number of
evaluations needed for each border vector. To that end, he presented an
algorithm that searches for border vectors one at a time, and we refer to this
algorithm as FIND-BORDER. At the core of the algorithm is a subroutine that
takes as input any unclassified vector v, and finds a border vector by
successively evaluating adjacent vectors. This subroutine is also used in the
algorithms of Boros et al. (1997), Makino and Ibaraki (1995), and Valiant
(1984).  As a result, any inference algorithm A that feeds unclassified vectors
to this subroutine satisfies the following upper bound: 

n(A, f ) # m( f )(n+1), œ f 0 Mn.

For the majority of monotone Boolean functions, the expression m( f )(n+1) is
greater than or equal to 2n, in which cases the bound is trivial.

Earlier work on monotone Boolean function inference (such as Hansel,
1966; Sokolov, 1982; Gainanov, 1984) focuses on reducing the query
complexity. More recent work (like Boros et al., 1997; Makino and Ibaraki,
1997; Fredman and Khachiyan, 1996) considers both the query complexity and
the computational complexity. The problem of inferring a monotone Boolean
function via membership queries is equivalent to many other computational
problems in a variety of fields (see, for instance, Bioch and Ibaraki, 1995; Eiter
and Gottlob, 1995). In these applications, algorithms that are efficient in terms
of query and computational complexity are used.

In practice, queries often involve some sort of effort, such as consulting with
experts, performing experiments or running simulations. For such applications,
queries far surpass computations in terms of cost. Therefore, this chapter
focuses on minimizing the query complexity as long as it is computationally
feasible.

2.5 An Existing Approach to Problem 2

Kovalerchuk et al. (1996) considered the problem of inferring a pair of
nested monotone Boolean functions. Their algorithm, which exhibited a
promising efficiency in their cancer diagnosis application, is an extension of
Hansel’s inference algorithm for a single monotone Boolean function.
However, the algorithm performance analysis is far from conclusive as a single
application represents a single pair of nested monotone Boolean functions.

2.6 Existing Approaches to Problem 3



162 Data Mining & Knowledge Discovery Based on Rule Induction

The problem of guided inference in the presence of stochastic errors is
referred to as sequential design of experiments in the statistics community. The
field of optimal experiment design (Federov, 1972) contains various optimality
criteria that are applicable in a sequential setting. The most common vector
selection criterion is based on instantaneous variance reduction. Other selection
criteria, such as the maximum information gain used in MacKay (1992), and
Tatsuoka and Ferguson (1999), have been studied. However, no guided
inference studies using a maximum likelihood framework were found in the
literature.

The theory of optimal experiment design is the most extensive for simple
regression models (Federov,  1972). Fortunately, efficient guided inference for
more complex models have been studied, such as the feed forward neural
networks in Cohn (1996), even though a sound theory has not been established.
In fact, the same article reported a convergence problem for which a partial
remedy was introduced in Cohn (1995).

2.7 Stochastic Models for Problem 3

Suppose a set of observed vectors V = {v1, v2, ..., vk} is given. For a given
number of queries m, let mz(v) be the number of times the oracle classified
vector v as z (for z = 0 and 1, and v 0 V). Associated with a monotone Boolean
function f, the number of errors it performs on the set of observations is given
by:

It is assumed that the oracle misclassifies each vector v with a probability
q(v) 0 (0, ½). That is, for a given monotone Boolean function f, the oracle
returns for vector v :

1 with probability p(v) = q(v)×(1 - f(v)) + (1 - q(v))×f(v), and 
0 with probability 1- p(v).

A key assumption is that the misclassification probabilities are all less than
½, otherwise it would not be possible to infer the correct monotone Boolean
function. If the sampled values are considered fixed, their joint probability
distribution function can be thought of as the likelihood of function f matching
the underlying function as follows:

L( f ) = qe ( f )(1 - q)m - e ( f ).

The likelihood value of a particular monotone Boolean function decreases
exponentially as more observations are added and therefore this value is
generally very small. However, the likelihood ratio given by:



163Chapter 4:  Discovering Rules that Govern Monotone Phenomena

measures the likelihood of a particular function f* relative to the likelihood of
all possible monotone Boolean functions F(V), defined on the set of vectors V.
Note that when the set of vectors V is equal to {0,1}n, then the set of all possible
monotone Boolean functions F(V) is equal to Mn.

The goal of the maximum likelihood problem is to find a monotone Boolean
function f* 0 F(V), so that L(f*) $ L(f) œ f 0 F(V). Assuming that the
misclassification probabilities q(v) are all less than ½, this problem is
equivalent to identifying a monotone Boolean function f* that minimizes the
number of errors e(f*) (Boros et al., 1995). Note that if q can take on values
greater than ½, then the maximum likelihood solution may maximize the
number of errors, as demonstrated by Boros et al. (1995). In this chapter, error
maximization is avoided by restricting q to be less than ½; existence of such a
solution is shown in Torvik and Triantaphyllou (2004).

The error minimization problem can be converted into an integer
maximization problem as follows:

min e( f ) = 

Since the term is constant, it can be removed from the optimization
objective. Furthermore, maximizing a particular objective function is equivalent
to minimizing the negative of that objective function, resulting in the following
simplified integer optimization problem:

subject to f(vi) # f(vj) œ vi, vj 0 V: vi ˜ vj, and
    f(vi) = 0 or 1.

This problem is known as a maximum closure problem, which can be
converted into a maximum flow problem (Picard, 1976). The most efficient
algorithms developed for the maximum flow problem use the idea of preflows
developed by Karzanov (1974). For example, the lift-to-front algorithm (e.g.,
Cormen et al., 1997) takes O(V3) time. The fact that this problem can be solved
in polynomial time is a nice property of the single q parameter model. For two
dimensional problems (i.e., V d ú2), the minimum number of errors can also be
guaranteed via a dynamic programming approach (Bloch and Silverman, 1997).

A more complex error model can potentially maintain as many parameters



164 Data Mining & Knowledge Discovery Based on Rule Induction

as the size of the domain V. That is, each vector v may have an associated
unique parameter p(v). In this case, minimizing the weighted least squares:

subject to p(vi) # p(vj) œ vi, vj 0 V: vi˜ vj,

where

yields a maximum likelihood solution (Robertson et al., 1988). This is a hard
optimization problem, and several algorithms have been developed to solve it
optimally and near optimally. The Pooled Adjacent Violators Algorithm
(PAVA) by Ayer et al. (1955) only guarantees optimality when (V, ˜) forms
a chain poset (also referred to as a simple order). The Min-Max algorithm
developed by Lee (1983) and the Isotonic Block Class with Stratification
(IBCS) algorithm by Block et al. (1994) guarantee optimality for the general
poset but both algorithms can potentially consume exponential time.
Unfortunately, no polynomial algorithm for the general poset was found in the
literature.

In addition to the full parametric model, there are models of intermediate
parametric complexity. One example is the logistic regression model with non-
negativity constraints on its parameters, as used for record linkage in databases
by Judson (2001). A monotone decision tree approach can be found in Makino
et al. (1999), and a sequential monotone rule induction approach can be found
in Ben-David (1992 and 1995).

It should be noted that the single parameter error model considered in this
chapter is somewhat restrictive, in the sense that it does not estimate
misclassification probabilities that vary across the vectors. However, the goal
of this chapter is to efficiently uncover the underlying monotone Boolean
function and not necessarily come up with accurate estimates for the individual
errors. The fixed misclassification probability assumption does not affect the
capability of the inference methodology as will be demonstrated in the
subsequent sections. The assumption is simply used to estimate the error rate
and the confidence in having inferred the correct function, and a more accurate
estimate of the maximum likelihood ratio may require a substantial increase in
computational complexity, as for the full parametric model described above.

3. INFERENCE OBJECTIVES AND 
METHODOLOGY

3.1 The Inference Objective for Problem 1



165Chapter 4:  Discovering Rules that Govern Monotone Phenomena

An inference algorithm that performs fewer queries than another algorithm
when reconstructing a particular deterministic monotone Boolean function is
considered more efficient on that particular function. However, it has not been
clear how to compare algorithms on the entire class of monotone Boolean
functions defined on {0,1}n.

The main existing algorithms by Hansel (1966), Sokolov (1982), and
Gainanov (1984) focus on the upper bounds of their query complexities.
Unfortunately, the worst case scenario reflects the algorithm performance on
a few specific functions. It does not reflect what to expect when executing the
algorithm on an arbitrary monotone Boolean function. For example, algorithms
that implement Gainanov’s subroutine (which we refer to as FIND-BORDER)
indirectly suggest minimizing the upper bound on the number of evaluations
per border vector. These algorithms greatly favor the simplest functions (which
may only have a single border vector) over the complex functions (with up
to + border vectors). Kovalerchuk et al. (1996) demonstrated
promising results for a Hansel based inference algorithm on a real world
application. However, their performance analysis is far from conclusive as a
single application represents a single pair of monotone Boolean functions.

With no prior knowledge (other than monotonicity) about the inference
application, each function is equally likely to be encountered and should
therefore carry the same weight in the objective. The objective for this problem
is to develop an algorithm that minimizes the average number of queries over
the entire class of monotone Boolean functions defined on the set {0,1}n. This
objective can be expressed mathematically as follows:

The objective Q(n) represents the entire class of monotone Boolean functions
Mn. As such, it provides a better indication of what to expect when executing
an algorithm on an arbitrary monotone Boolean function.

3.2 The Inference Objective for Problem 2

The approach taken to this problem is analogous to that of Problem 1. The
minimum average number of queries for Problem 2.k (for k = 1, 2, and 3) can
be expressed mathematically as follows:

Here, n(Ak, f1, f2) denotes the number of queries performed by algorithm Ak,
in reconstructing the pair of nested monotone Boolean functions f1 and f2



166 Data Mining & Knowledge Discovery Based on Rule Induction

defined on the set {0,1}n. Here, A1, A2, and A3 denote algorithms designed for
Problems 2.1, 2.2, and 2.3, respectively. Please recall from section 2 that the
number of pairs of nested monotone Boolean functions defined on the set
{0,1}n is equal to Q(n+1), the number of monotone Boolean functions defined
on the set {0,1}n+1.

Since these three problems differ in the way the oracles are queried, it
should be clarified that a query unit pertains to the membership value from one
of the two functions f1 and f2. This definition is intuitive for Problems 2.1 and
2.3, where two oracles are accessed individually. For Problem 2.2, the
membership values are provided in pairs from a single three-valued oracle. To
make the definition of Q2(n) comparable to Q1(n) and Q3(n), each query to the
three-valued oracle will be counted as two queries.

3.3 The Inference Objective for Problem 3

The approach taken to Problem 3 is similar to that of Problems 1 and 2. The
goal is to minimize the average number of queries needed to completely
reconstruct the underlying monotone Boolean function, expressed
mathematically as follows:

Here, n(A, f, q) denotes the expected number of queries performed by
algorithm A in completely reconstructing the underlying monotone Boolean
function f from an oracle with a fixed misclassification probability q.
Completely reconstructing the underlying function translates into making the
likelihood ratio 8(f*) for the inferred function f* reach a sufficiently high value
(e.g., 0.99).

It should be stressed that the misclassification probability q is unknown and
ranges from 0 up to ½. However, it is expected that the average number of
queries will increase significantly with q, since, by definition, it approaches
infinity as q approaches ½, and it is finite when q is equal to 0. Therefore, the
average over a large range q may not be an accurate prediction of how many
queries to expect for a particular application. The average query complexity
will therefore be evaluated as a function of n and q, even though q is unknown.

3.4 Incremental Updates for the Fixed Misclassification
Probability Model

Suppose the error minimizing function fold* and its misclassification
parameter qold*, associated with a set of vectors V = {v1, v2, ..., vk} and their
m0(v) and m1(v) values, are given. When a new vector is classified by the oracle



167Chapter 4:  Discovering Rules that Govern Monotone Phenomena

(i.e., mz(v) 7 mz(v) + 1), the function fold* and its misclassification parameter
qold* may have to be updated. Since the new error minimizing function is likely
to be close to the old function, it may be inefficient to solve the entire problem
over again.

Simply stated the incremental problem consists of finding fnew* and
consequently qnew* when mz(v) 7 mz(v) + 1. If the new classification is
consistent with the old function (i.e., fold*(v) = z), then the old function remains
error minimizing (i.e., fold* = fnew*). Therefore, the number of errors remains the
same and the misclassification estimate is reduced to qnew* = e(fold*)/(mold + 1).
Note that this case is the most likely one since it occurs with an estimated
probability of 1- qold* $ ½. If, on the other hand, the new classification is
inconsistent with the old function (i.e., fold*(v) = 1- z), the old function may or
may not remain error minimizing. The only case in which the old function does
not remain error minimizing is when there is an alternative error minimizing
function fa* on the old data for which fa*(v) = z. In this case fa* is error
minimizing for the new data. 

The number of possible error minimizing functions may be exponential in
the size of the set V, and therefore storing all of them may not be an efficient
solution to this problem. To avoid this computational burden an incremental
algorithm such as the one described in Torvik and Triantaphyllou (2004) can
be used.

3.5 Selection Criteria for Problem 1

When computing the optimal solutions, many different and complex posets
are encountered. The optimal vectors of these posets seemed to display two
general properties (Torvik and Triantaphyllou, 2002). First, the optimal vectors
tend to be in the vertical middle. More specifically, all posets observed in the
inference process when n is 4 or less have at least one optimal vector in the
most populous (middle) layer. This observation alone is not sufficient to
pinpoint an optimal vector. The second property observed is that the optimal
vectors also tend to be horizontal end points.

Now consider creating a selection criterion based on the ideas of vertical
middle and horizontal end points. Suppose a subset of unclassified vectors, V
= {v1, v2, ..., vp} is given. Let K1(vi) and K0(vi) be the number of vectors that are
concurrently classified when f(vi) equals to 1 and 0, respectively.  Invariably
selecting a vector v with the minimum |K1(v) - K0(v)| value guarantees the
minimum average number of queries for inference problems with n strictly less
than 5 (Torvik and Triantaphyllou, 2002).

Unfortunately, this selection criterion is not optimal for all the posets
generated for n equal to 4. It is only optimal for the subset of posets
encountered when using the criterion min|K1 - K0|. Another drawback is that it
is not optimal for the inference problem when n is equal to 5. However, the



168 Data Mining & Knowledge Discovery Based on Rule Induction

criterion is probably close to optimal since the larger posets eventually
decompose into smaller posets.

It is important to note that what may look like intuitive criteria (without the
consultation of optimal solutions) may lead to poor performance and
ambiguous choices. For example, it may seem reasonable to attempt to classify
as many vectors as possible for each query. The two criteria max(K1(v) + K0(v))
and max(K1(v)K0(v)) are consistent with this philosophy (see Judson, 1999).
However, they are extremely counterproductive to minimizing the average
query complexity and should be avoided. As an example, consider the set of
vectors {0,1}4. The criterion max(K1(v) + K0(v)) selects either the (0000) or the
(1111) vector, which happens to maximize the average number of queries. The
criterion max(K1(v)K0(v)) ties the entire set of vectors, and is therefore the
choice of vector is ambiguous.

There is a logical explanation for why these two selection criteria are
counterproductive. Vectors that are able to concurrently classify more vectors
are also more likely to be classified by others. Following this line of thought,
the selection criterion min(K1(v) + K0(v)) seems reasonable. This criterion is
similar to min|K1(v) - K0(v)|, but it does not satisfy the same optimality
conditions for the inference problem when n is equal to 4.

3.6 Selection Criteria for Problems 2.1, 2.2, and 2.3

The minimum average number of queries for the unrestricted problem Q3(n)
is equal to that of the single function case in one dimension higher Q(n+1). That
is, Q3(n) = Q(n+1). To see this connection consider a pair of nested monotone
Boolean functions f1 and f2 defined on {0,1}n. The query domain for the nested
case can be viewed as the product: {0,1}n ×{f2, f1}. Each of the vertices in the
resulting poset ({0,1}n+1, ˜), may take on function values of 0 or 1, where the
monotonicity property is preserved. In other words, a pair of nested monotone
Boolean functions defined on {0,1}n are equivalent to a single monotone
Boolean function defined on {0,1}n+1.

The selection criterion min|K1(v)-K0(v)| was shown to be very efficient in
minimizing the average number of queries in Problem 1. It will therefore be
used for the three nested problems with a slight modification. The query
domain for the nested case is made up of the set of vectors {0,1}n ×{f2, f1}. For
a vertex labeled (v fi ), let Kz(v, fi) be the number of vertices that are
concurrently classified when the value of fi (v) is queried and the answer is fi(v)
= z, for z = 0 and 1. When the access to the oracles is unrestricted (i.e., Problem
2.3), vertices are selected based on the criterion min|K1(v, fi) - K0(v, fi)|. This
criterion is equivalent to the criterion min|K1(v)-K0(v)| for the single function
case. The only change is in the notation since the oracle that is to provide the
answer has to be identified for Problem 2.3.

For sequential oracles (i.e., Problem 2.1), queries of the form f2(v) are



169Chapter 4:  Discovering Rules that Govern Monotone Phenomena

infeasible until all of the queries of the form f1(v) are classified. In this case, the
criterion used during the first phase is min|K1(v, f1) - K0(v, f1)|, after which the
criterion min|K1(v, f2) - K0(v, f2)| is used.

For the three-valued oracle (i.e., Problem 2.2), the queries are of the form
(f1(v), f2(v)) and are selected using the criterion min|K11(v)-K00(v)|. Here the
value of the function Kzz(v) equals the number of vertices concurrently
classified when vertex v is queried and the result of the query is f1(v) = f2(v) =
z, for z = 0 and 1. Once there are no pairs of vertices of the form (f1(v), f2(v)) left
unclassified, the criterion min|K1(v, fi) - K0(v, fi)| is used for the remaining of the
query selections.

3.7 Selection Criterion for Problem 3

The status of the inference process will be considered to be in one of three
stages. Stage 1 starts with the first question and lasts until a deterministic
monotone Boolean function is obtained. During Stage 1 only vectors that may
take on both 0 and 1 values are queried. As a result, no (identifiable) errors are
observed in Stage 1, and thus the monotone Boolean function inferred during
Stage 1 is deterministic. This function, however, may or may not be the correct
function. In fact, the probability that it is the correct function is equal to the
probability that no misclassifications were made: (1- q)m, where m is the
number of questions used during Stage 1 and q is the true misclassification
probability. This probability decreases rapidly with m, regardless of the value
of q. Therefore, the queries performed after Stage 1 will benefit greatly from
a reduction in the number of Stage 1 queries. Please note that since no
inconsistencies have been observed, there is no way to properly estimate q at
this point.

After a deterministic monotone Boolean function is obtained in Stage 1, the
inference process enters Stage 2. At this point it is unclear as to how to select
queries for Stage 2, so a random selection procedure will be used for this stage.
After the first error occurs in Stage 2, the inference process enters Stage 3, in
which it will remain until termination. Stage 3 is the focus of this chapter,
because it is the only stage in which the likelihood ratio can be properly
evaluated and q can be estimated based on the observed vectors.

Please recall that the likelihood function is given by:

L( f ) = qe ( f )(1 - q)m - e ( f ),

and the likelihood ratio is given by:



170 Data Mining & Knowledge Discovery Based on Rule Induction

As an example of the likelihood ratio computations consider the example
data given in Table 2. The likelihood values for the all the possible monotone
Boolean functions are given in Table 3. The function f* = v1v3 w v2v3 produces
16 errors. Its associated estimated misclassification probability q* is 16/36 =
4/9, since the total number of observations is m = 36. Therefore, the likelihood
value of this function L(f*) is (4/9)16(1 - 4/9)36-16 = 1.818×10-11. Notice how
small this value is after only 36 observations. Adding up the likelihood values
the monotone Boolean functions yields (13×1.455 + 2×1.536 + 5×1.818)×10-11

=3.107×10-10. Then the maximum likelihood ratio is computed as follows: 8(f*)
= 1.818×10-11/3.107 ×10-10 = 0.0585.

Table 2. A Sample Data Set for Problem 3.

v m1(v) m0(v) m1(v) -m0(v) 
111 0 1 -1
110 3 5 -2
101 4 1 3
11 3 1 2

100 4 5 -1
10 2 0 2
1 3 3 0
0 1 0 1

Table 3. Example Likelihood Values for All Functions in M3.
f e(f) q(f) L(f) 8(f)
F 20 ½ 1.455×10-11 0.0468
v1v2v3 21 ½ 1.455×10-11 0.0468
v1v2 23 ½ 1.455×10-11 0.0468
v1v3 18 ½ 1.455×10-11 0.0468
v1v2 w v1v3 20 ½ 1.455×10-11 0.0468
v1 21 ½ 1.455×10-11 0.0468
v2v3 19 ½ 1.455×10-11 0.0468
v1 w v2v3 19 ½ 1.455×10-11 0.0468
v1v3 w v2v3 16 36989 1.818×10-11 0.0585
v1v2 w v1v3 w v2v3 18 ½ 1.455×10-11 0.0468
v1v2 w v2v3 21 ½ 1.455×10-11 0.0468
v2 19 ½ 1.455×10-11 0.0468



171Chapter 4:  Discovering Rules that Govern Monotone Phenomena

v1 w v2 17 17/36 1.536×10-11 0.0495
v2 w v1v3 16 36989 1.818×10-11 0.0585
v3 16 36989 1.818×10-11 0.0585
v2 w v3 16 36989 1.818×10-11 0.0585
v1 w v2 w v3 17 17/36 1.536×10-11 0.0495
v1 w v3 19 ½ 1.455×10-11 0.0468
v3 w v1v2 18 ½ 1.455×10-11 0.0468
T 16 36989 1.818×10-11 0.0585

Now let us return to the vector selection (or guided inference) problem. As
shown above, the probability that the correct function is inferred during Stage
1 decreases rapidly with the number of queries used during that stage.
Therefore, the selection criterion min|K0(v) - K1(v)| will be used as a standard
for Stage 1, when comparing different approaches for the following Stage 3.
This avoids bias in the sense that all Stage 3 approaches will benefit from using
min|K0(v) - K1(v)| during Stage 1.

One important property of the selection criterion for Stage 3 is that the
maximum likelihood ratio converges to 1. It is possible to define selection
criteria that do not converge. If, for example, the same vector is invariably
selected, the estimated value of q will converge to its true value. In this case,
the likelihood values may remain equal for several monotone Boolean functions
and hence the maximum likelihood ratio will never converge to 1.

Intuition may lead to an inefficient selection criterion. For example, let Ez(v)
be defined by the number of errors associated with assigning the function value
f(v) to z, as follows:

Then, consider defining the vector v which “contributes the most errors” by
max(E0(v)+E1(v)). This vector selection criterion may lead to the same vector
being invariably queried and hence it might suffer from convergence problems,
as will be demonstrated empirically in section 4.

The likelihood framework seems to form a great basis for defining a Stage
3 vector selection criterion. Since the goal is to make the likelihood ratio
converge to 1 as fast as possible, a reasonable approach would be to select the
vector that maximizes the expected maximum likelihood ratio at each inference
step. To do this, the expected maximum likelihood ratio )8(v) = p(v)81(v) + (1
- p(v))80(v) has to be estimated for each vector v. Here 8z(v) denotes the
resulting maximum likelihood ratio when f(v) = z is observed. Please recall that
p(v) is the probability of observing f(v) = 1. That is, it can be estimated by p*(v)
= q*(1- f*(v)) + (1 - q*)f*(v).



172 Data Mining & Knowledge Discovery Based on Rule Induction

As an example consider observing the vector (001). Table 4 gives the
updated likelihood ratios for each monotone Boolean function when mz(001)
= mz(001) + 1, for z = 0 and 1. For a monotone Boolean function f, and a
classification z, ez(001, f) and 8z(001, f) here denote the updated number of
errors and the likelihood ratio, respectively. The updated maximum likelihood
ratios are 81(001) = 81(001, T) = 0.0649 and 80(001) = 80(001, v1v3 w v2v3) =
0.0657. Since the optimal function assigns the vector (001) to 0 (i.e., f*(001)
= 0), the estimated probability of observing f(001) = 1 is given by p*(001) = q*
= 4/9. Therefore, the expected maximum likelihood ratio when querying vector
001 is given by )8(001) = p*(001)81(001) + (1- p*(001))80(001) = 4/9
×0.0649 + 5/9 ×0.0657 = 0.0653.

Similar computations for the other vectors yield )8(000) = 0.0651,
)8(010) = 0.0654, )8(011) = 0.0592, )8(100) = 0.0652, )8(101) = 0.0592,
)8(110) = 0.0654, and finally )8(111) = 0.0592. The vectors with the largest
expected likelihood ratio value are (010) and (110). Since no further
improvements of the selection criterion is immediately obvious, ties are broken
arbitrarily.

The simulations in section 4 reveal the efficiency of the selection criterion
max )8(v) in terms of the query complexity. In terms of computational
complexity it may take an exponential time (in the size of V) to compute max
)8(v). Since the computational time for incrementally finding the inferred
function is of O(V2), it would be nice to find a selection criterion that does not
take more time than this and still makes the likelihood converge to 1 at a faster
rate than randomly selecting vectors.

Table 4. Updated Likelihood Ratios for mz(001) = mz(001) + 1.

f 8(f) e1(001, f) 81(001, f) e0(001, f) 80(001, f)
F 0.0468 21 0.0462 20 0.0468
v1v2v3 0.0468 22 0.0462 21 0.0468
v1v2 0.0468 24 0.0462 23 0.0468
v1v3 0.0468 19 0.0462 18 0.0474
v1v2 w v1v3 0.0468 21 0.0462 20 0.0468
v1 0.0468 22 0.0462 21 0.0468
v2v3 0.0468 20 0.0462 19 0.0468
v1 w v2v3 0.0468 20 0.0462 19 0.0468
v1v3 w v2v3 0.0585 17 0.0522 16 0.0657
v1v2 w v1v3 w v2v3 0.0468 19 0.0462 18 0.0474
v1v2 w v2v3 0.0468 22 0.0462 21 0.0468
v2 0.0468 20 0.0462 19 0.0468
v1 w v2 0.0495 18 0.0469 17 0.0529
v2 w v1v3 0.0585 17 0.0522 16 0.0657



173Chapter 4:  Discovering Rules that Govern Monotone Phenomena

v3 0.0585 16 0.0649 17 0.0529
v2 w v3 0.0585 16 0.0649 17 0.0529
v1 w v2 w v3 0.0495 17 0.0522 18 0.0474
v1 w v3 0.0468 19 0.0462 20 0.0468
v3 w v1v2 0.0468 18 0.0469 19 0.0468
T 0.0585 16 0.0649 17 0.0529

One such possibility may be based on the inferred border vectors. For the
sake of argument suppose that the underlying monotone Boolean function f to
be inferred is known. Then randomly selecting vectors from its corresponding
border vectors will make the maximum likelihood ratio converge to 1. As the
number of queries m goes to infinity, the ratios m0(v)/(m0(v) + m1(v)) œ v 0
LU(f) and m1(w)/(m0(w) + m1(w)) œ w 0 UZ(f) all converge to q. The number
of errors performed by any other monotone Boolean function g is at least x =
min{min{m1(v) - m0(v),v 0 LU(f)}, min{m0(w) - m1(w), w 0 UZ(f)}} greater
than the number of errors performed by function f. Furthermore, x . qm - (1-
q)m = m(2q - 1) for large m. That is, the number of additional errors increases
at least linearly with m. Then, as m goes to infinity, so does the number of
additional errors performed by each of the other monotone Boolean functions.
That is, the relative likelihoods L(f)/L(g) > (q/(1- q))x converge to 0 as m goes
to infinity. Since the number of other monotone Boolean functions is a finite
number that does not depend on m, the likelihood ratio 8(f) = L(f) / (L(f) +
3L(g)) converges to 1 as m goes to infinity. 

Focusing the queries at the border vectors of the underlying function
probably allows this convergence to occur at a faster rate than randomly
selecting from all the vectors. In situations where the underlying function is
unknown, it may be that focusing the queries on the border vectors of the
inferred function (i.e., v 0 LU(f*) c UZ(f*)) is better than completely random
selection. In the long run, an inferred border vector will not prevail if it is not
an underlying border vector. Since the misclassification rate is less than ½, the
rate at which the incorrectly classified inferred border vectors become correctly
classified is greater than the rate at which correctly classified inferred border
vectors become incorrectly classified. Therefore, in the long run all the
classifications become correct when the queries are selected from the set of
border vectors of the inferred function.

Notice that this convergence holds even if the misclassification probability
is different for each vector, as long as they are all less than ½. Another added
benefit is that finding the border vectors is easy, since they are readily available
from the inferred function f*. In fact, a simple modification of the incremental
maximum flow algorithm can store each of these vectors as they are found. For
each monotone Boolean function there are at most O(V) border vectors in a set
of vectors V. During the inference process the inferred function may take on
any of these monotone Boolean functions. Therefore, randomly selecting one



174 Data Mining & Knowledge Discovery Based on Rule Induction

of the border vectors takes O(V) time.

4. EXPERIMENTAL RESULTS

4.1 Experimental Results for Problem 1

The preexisting inference algorithms described in section 2 do not specify
which vector to select when there are ties. In particular, the Sokolov and Hansel
algorithms may have to choose between two vectors that make up the middle
of a particular chain. Furthermore, the subroutine FIND-BORDER needs to be
fed unclassified vectors, of which there may be many. Even the selection
criterion min|K1-K0| may result in ties. For the purpose of comparing the
algorithms on the same ground and without introducing another aspect of
randomness, ties were broken by selecting the first vector in the list of tied
vectors.

The results in Figure 3 are based on an exhaustive analysis (i.e., all the
monotone functions were generated) for n up to and including 5. Random
samples of 2,000 functions were generated for n = 6, 7, and  8; while for n = 9,
10, and 11 they were composed of 200 functions; the functions were generated
using the algorithm described in Torvik and Triantaphyllou (2002).

The Horvitz-Thompson (1952) estimator is used to compute the averages for
n greater than 5. The average number of queries is normalized by the maximum
possible number of queries 2n so that the magnitudes of the averages in Figure
3 are not overshadowed by the large values obtained for n equal to 11. As a
consequence, two algorithms that result in parallel curves in such a plot, have
an exponential (in n) difference in the average number of queries. Also, the gap
between the curves in Figure 3 and the horizontal line Average Number of
Queries / 2n = 1 (not shown in the figure) can be thought of as the benefit of the
monotone assumption. This is due to the fact that 2n is the number of required
queries when the underlying function is not necessarily monotone.



175Chapter 4:  Discovering Rules that Govern Monotone Phenomena

1 2 3 4 5 6 7 8 9 10 11

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Teacher

min|K1 - K0|
Hansel

Sokolov

FIND-BORDER

Number of Variables, n

A
ve

ra
ge

 N
um

be
r 

of
 Q

ue
rie

s 
/ 

2n

Figure 3. The Average Query Complexities for Problem 1.

The curve titled “Teacher” represents the lower bound on the number of queries
for every single function. Therefore, it is expected that a few extra queries are
required on the average. Since the heuristic based on the selection criterion
min|K1-K0| achieves the minimum average number of queries for n up to 4, it
can be thought of as a lower bound on the average, and its gap between Teacher
quantifies the benefits of knowing the actual function beforehand.

Figure 3 paints a clear picture of how the preexisting inference algorithms
fare against each other. Hansel’s algorithm was the best performer by far,
Sokolov’s came in second, and an algorithm using the subroutine FIND-
BORDER (which is also used by Gainanov, 1984; Valiant, 1984; Makino and
Ibaraki, 1995; Boros et al., 1997) was a distant third. In fact, since the curve
differences between Hansel and Sokolov, and Sokolov and the subroutine
FIND-BORDER implementation, seem to increase with n, the corresponding
difference in the average number of queries increases at rate greater than
exponentially with n.

The difference between the curves for Hansel and “Teacher” decreases as
n increases. The algorithm based on the criterion min|K1-K0| has a curve that is
almost parallel to Hansel’s curve, indicating that the selection criterion



176 Data Mining & Knowledge Discovery Based on Rule Induction

performs about 2% better than Hansel’s algorithm. This decrease is especially
clear in Figure 3 for n up to and including 8. For larger values of n, the high
variance of our estimates makes it hard to distinguish the two curves, but the
overall decreasing trends remain intact. It might seem that a 2% decrease is
insignificant, but writing it as 2n ×0.02 shows its real magnitude.

Another nice characteristic of this selection criterion is that it is the most
consistent of all the algorithms. For example, it performs between 10 and 18
queries for 99.6% of the monotone Boolean functions in M5. In contrast, the
algorithm based on the subroutine FIND-BORDER is the least consistent with
between 8 and 25 queries for 99.6% of the monotone Boolean functions.

4.2 Experimental Results for Problem 2

The results in Figures 4, 5, and 6 are based on an exhaustive analysis (i.e.,
all the monotone functions were generated) for n up to and including 4. For n
= 4, 5, ...,12 random samples of functions were generated and the Horvitz-
Thompson (1952) estimator is used to compute the averages for n greater than
4. The number of pairs of nested monotone Boolean functions generated were
2,000 for n = 5, 6, 7, and 200 for n = 8, 9, 10, and 100 for n = 11 and 12.

Figure 4 shows the average number of queries for Problem 2 when using the
selection criteria. The lower curve corresponds to the unrestricted case
(Problem 2.3), which achieves the fewest number of queries on the average.
The sequential case (Problem 2.1), corresponding to the middle curve, is not as
efficient as the unrestricted oracles in general, although they are very close for
n = 1, 2, 3, and 4. The least efficient of the three types of oracles is the three-
valued (Problem 2.2) corresponding to the upper curve.

The gap between the curves in Figure 4 and the horizontal line Average
Number of Queries / 2n+1 = 1 (the uppermost line of the box around the curves)
can be thought of as the benefit of the monotone and nestedness assumptions
together. This is due to the fact that 2n+1 is the number of required queries when
the underlying pair of functions are neither nested or monotone. For example,
when n = 12 in the unrestricted problem (k = 3) the average number of queries
is reduced to about 20% of the maximum number of queries 213 = 8,192 due to
the monotone and nestedness assumptions.

Figure 5 quantifies the increase in the average number of queries due to the
two restrictions on the oracles for n = 1,2, ..., 12. As mentioned earlier, the
sequential oracles are practically unrestrictive for n = 1, 2, 3, and 4. For n
greater than 4, the increase in average query complexity oscillates between 12%
and 33% due to odd and even n, being much greater for odd n. In contrast, the
three-valued oracle is much more restrictive across all the observed n, where the
increase in the average number of queries oscillates between 35% and 55%,
again due to odd and even n, being greater for odd n. In summary, the increases
in the average number of queries for the sequential and three-valued cases are



177Chapter 4:  Discovering Rules that Govern Monotone Phenomena

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Variables, n

A
ve

ra
ge

 N
um

be
r 

of
 Q

ue
rie

s 
/ 

2n+
1

Unres tric ted Orac le (k  = 3)

Sequential Orac les  (k  = 1)

Three-V alued Orac le (k  = 2)

dramatic.  This is probably due to the fact that the average number of queries
increases exponentially with the number of variables.

      Figure 4.  The Average Query Complexities for Problem 2.

If the nested property of the two functions defined on {0,1}n is ignored, the
minimum total number of questions is, on average, 2Q(n). The benefit from the
nestedness assumption for Problem 2 is quantified by the ratio of Q3(n)/2Q(n)
which is given in Figure 6 for n = 1, 2, ..., 12. Therefore, the curves given in
Figure 6 show the reduction in the average number of queries due to the
nestedness assumption. This reduction decreases with the number of variables.

It starts out at 20% for n = 1, and oscillates between 1% and 10% for n greater
than 7.



178 Data Mining & Knowledge Discovery Based on Rule Induction

1 2 3 4 5 6 7 8 9 10 11 12
1

1.1

1.2

1.3

1.4

1.5

1.6

Num ber of V ariables , n

A
ve

ra
ge

 N
um

be
r 

of
 Q

ue
rie

s 
/ 

A
ve

ra
ge

 N
um

be
r 

of
 Q

ue
rie

s 
(U

nr
es

tr
ic

te
d 

O
ra

cl
es

)

Sequentia l Orac les  (k  = 1)

Three-V alued Orac le (k  = 2)

Figure 5. Increase in Query Complexities Due to Restricted Access to the Oracles. 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

0 .8

0 .8 2

0 .8 4

0 .8 6

0 .8 8

0 .9

0 .9 2

0 .9 4

0 .9 6

0 .9 8

1

N u m b e r o f V a ria b le s ,  n

Q
3(n

) 
/ 

2Q
(n

)

Figure 6.  Reduction in Query Complexity Due to the Nestedness Assumption.



179Chapter 4:  Discovering Rules that Govern Monotone Phenomena

4.3 Experimental Results for Problem 3

For the purpose of comparing the efficiency of the different selection criteria
for Stage 3 on the same basis, ties resulting from the selection criteria
(min|K0(v) - K1(v)| for Stage 1, and max(E0(v) + E1(v)), max )8(v), and v 0
LU(f*) c UZ(f*), the set of border vectors for Stage 3) were broken randomly.
The four different inference processes using max )8(v), v 0 LU(f*) c UZ(f*),
max(E0(v) + E1(v)), or random selection for Stage 3 were simulated on the set
of vertices {0,1}n. For all three Stage 3 selection criteria, the selection criterion
min|K0(v) - K1(v)| was used for Stage 1 and random selection was used for Stage
2. The resulting simulations were repeated 100, 50, 25, and 10 times for each
of 6 representative functions of Mn, with misclassification probabilities 0.1, 0.2,
0.3, and 0.4, for n = 2, 3, 4 and 5, respectively.

The representative functions are given in Table 5. For n = 4 and 5, these
representative functions were randomly generated from a uniform distribution
with individual probabilities of 1/Q(n) = 1/168 and 1/7581, respectively. For
n = 3, the representative functions consist of non-similar functions (one from
each similar subset of M3). These functions represent all the functions in M3,
since the average case behavior is the same for a pair of similar monotone
Boolean functions.

Table 5. The Representative Functions Used in the Simulations of Problem 3.

n = 2 n = 3 n = 4 n = 5

F F v1v2 w v2v4 w v1v3v4 v1v4 w v1v5 w v2v4 w v2v5

v1v2 v1v2v3 v1v2 w v1v3 w v2v3 w v2v4
w v3v4

v1v3 w v2v3 w v2v4 w v1v2v5

v1 v1v2 v2v3 w v2v4  v2 w v1v3v4 w v1v4v5

v2 v1v2 w
v1v3

v1v2v3 w v1v3v4 w v2v3v4 v1v3 w v2v4 w v3v5 w v1v4v5

v1 w v2 v1 v1v2 w v2v4 w v3v4 v2v4 w v2v5 w v3v5 w v4v5

T v1v2 w
v1v3 w v2v3

v3 w v1v2 w v1v4 v2v5 w v1v2v3 w v1v3v4 w
v1v4v5 w v3v4v5

To compute the overall average for a given q, the individual curves were
weighted by the number of similar functions the representative function has
(including itself) in M3. The individual curves for the monotone Boolean
functions F, v1v2v3, v1v2, v1v2 w v1v3, v1, and v1v2 w v1v3 w v2v3, were therefore
weighted by 2, 2, 6, 6, 3, and 1, respectively. For n = 2, 4, and 5, the overall
averages were computed without weights. The overall averages for n = 2 and
3 benefit from a reduced variance, since no additional errors are added due to
the sampling of functions as done for n = 4 and 5.



180 Data Mining & Knowledge Discovery Based on Rule Induction

Figure 7 shows the resulting average maximum likelihood curves for the
inference problem defined on n = 2, 3, 4, and 5, and q = 0.1, 0.2, 0.3, and 0.4.
Each curve is the average of 600, 300, 150, and 60 simulated inference
processes observed for n = 2, 3, 4, and 5, respectively. In each plot, the
horizontal axis corresponds to the number of Stage 3 queries, and the vertical
axis corresponds to the maximum likelihood ratio. The curves are shown for the
range of Stage 3 queries where the curves corresponding to the selection
criterion max )8(v) has a maximum likelihood ratio that is less than 0.99.

Not only do the curves corresponding to the guided selection criteria max
)8(v) and v 0 LU(f*) c UZ(f*) converge to 1 but they do so at a much faster
rate than the curves corresponding to unguided random selection. In fact, the
random selection achieves a maximum likelihood ratio of only about 0.7 after
the same number of queries as the criterion max )8(v) uses to reach 0.99, and
the criterion v 0 LU(f*) c UZ(f*) uses to reach about 0.9, for n = 4.

The difference between the curves for unguided selection and these two
guided selections grows with the misclassification probability q and with the
dimension n. That is, the benefits from actively selecting vectors over passively
receiving observations are greater when the values of q and n are large. In other
words, the higher the misclassfication probability and the dimension of the
problem are, the greater become the benefits of guiding the inference process.

The curves associated with criterion max(E0(v) + E1(v)) seems to converge
to a value significantly less than 1. For example, when n = 3 and q = 0.3, the
maximum likelihood ratio converges to about 0.4, and this value decreases as
the values of q and n increase. Therefore, the larger error rate and the vector
domain is, the more important it becomes to define an appropriate vector
selection criterion.

Table 6 gives the average number of queries needed by the selection
criterion max )8(v) to converge to a maximum likelihood ratio of 0.99 for n =



181Chapter 4:  Discovering Rules that Govern Monotone Phenomena

2, 3, 4, and 5, and for q = 0.1, 0.2, 0.3, and 0.4. For a given n, these numbers
increase dramatically as q increases. In fact, there seems to be more than a
doubling in the numbers for fixed increments of q. For a given q, these numbers
do not increase in such a dramatic fashion when n increases. However, they do
increase faster than linearly with n. 

Figure 7.  Average Case Behavior of Various Selection Criteria for Problem 3.

0 10 20
0

0.5

1

Vertical Axis = Maximum Likelihood Ratio

Horizontal Axis = Number of Stage 3 Queries

q = 0.1

n = 2

 max ∆λ (v)              
v ∈ LU(f*) ∪  UZ(f*)      
random                                  
max(E0(v) + E1(v))

0 50
0

0.5

1
q = 0.2

0 50 100
0

0.5

1
q = 0.3

0 500
0

0.5

1
q = 0.4

0 10 20
0

0.5

1

n = 3

0 50
0

0.5

1

0 100
0

0.5

1

0 500
0

0.5

1

0 20
0

0.5

1

n = 4

0 50
0

0.5

1

0 100 200
0

0.5

1

0 500
0

0.5

1

0 20 40
0

0.5

1

n = 5

0 50 100
0

0.5

1

0 100 200
0

0.5

1

0 500
0

0.5

1



182 Data Mining & Knowledge Discovery Based on Rule Induction

Table 6. The Average Number of Stage 3 Queries Used by the Selection Criterion
max )8(v) to Reach 8 > 0.99 in Problem 3 Defined on {0,1}n with Fixed
Misclassification Probability q.

q = 0.1 q = 0.2 q = 0.3 q = 0.4

n = 2 22 54 125 560

n = 3 27 65 170 710

n = 4 33 85 241 951

n = 5 45 111 277 1167

Randomly selecting the inferred border vectors (i.e., v 0 LU(f*) c UZ(f*))
makes the maximum likelihood ratio converge to 1, as long as the
misclassification probabilities are all less than ½. That is, the misclassification
probabilities do not necessarily have to be fixed. To see whether this holds for
the selection criterion max )8(v), consider an unrestricted model where the
misclassification probability q(v) is a random variable distributed uniformly on
the interval [q(1- *), q(1 + *)], where * 0 [0,1], for each vector v 0 {0,1}n.

The case when * = 0 corresponds to the fixed misclassification probability
model, that is, when q(v) is equal to q for all vectors v 0 {0,1}n. The range of
values for q(v) increases with *, but the expected value of q(v) is always equal
to q. Therefore, the estimate of the maximum likelihood ratio based on the fixed
q model is worse for larger values of *. To compare this estimate to an
unrestricted estimate, the inference process was simulated 200 times for each
* = 0, 0.5, and 1, holding constant n = 3 and the expected q = 0.2. Figure 8
shows the average maximum likelihood ratio curves for the unrestricted model
(dotted curves) and the fixed model (solid curves) when using the selection
criterion max )8(v).   

The regular and the unrestricted maximum likelihood ratios both converge
to 1, though at slower rates as * increases. In other words, the selection
criterion max )8(v) is appropriate in situations where the misclassification
probability is not necessarily fixed. In general, the unrestricted maximum
likelihood ratio is much smaller than the regular one. For the case when q(v) is
fixed at 0.2 (i.e., * = 0), the regular maximum likelihood ratio should be used,
and when * > 0 it is an overestimate of the true maximum likelihood ratio. For
the case when * = 1, the unrestricted maximum likelihood ratio should be used,
and when * < 1 it may be an underestimate. The true likelihood ratio lies
somewhere in between the two.



183Chapter 4:  Discovering Rules that Govern Monotone Phenomena

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Stage 3 Queries

M
ax

im
um

 L
ik

el
ih

oo
d 

R
at

io

λ * for q(v) = 0.2                     
λ * for q(v) ~ U[0.1, 0.3]             
λ * for q(v) ~ U[0, 0.4]               
Unrestricted λ * for q(v) = 0.2        
Unrestricted λ * for q(v) ~ U[0.1, 0.3]
Unrestricted λ * for q(v) ~ U[0, 0.4]  

Figure 8. The Restricted and Regular Maximum Likelihood Ratios Simulated
with Expected q = 0.2, and n = 3.

5. SUMMARY AND DISCUSSION

5.1 Summary of the Research Findings

The recent focus on the computational complexity has come at the expense
of a drastic increase in the query complexity for Problem 1. In fact, the more
recent the inference algorithm is, the worse it performs in terms of the average
query complexity. The subroutine, here referred to as FIND-BORDER, is the
most commonly used in the recent literature (Gainanov, 1984; Valiant, 1984;
Makino and Ibaraki, 1995; Boros et al.,1997), and its performance was by far
the worst. Therefore, the framework for unbiased empirical comparison of
inference algorithms described in this chapter seems to be long overdue.

Even though guaranteeing the minimum average number of queries is
currently only computationally feasible for relatively few variables (i.e., up to



184 Data Mining & Knowledge Discovery Based on Rule Induction

5 or 6), the recursive algorithm used for Problem 1 revealed the non-intuitive
nature of the optimal solutions. These solutions paved the way for the new
selection criterion min|K1-K0| . This criterion would probably not have been
developed (due to its non-intuitive nature) without the consultation of the
optimal solutions.

The inference algorithm based on this selection criterion extends the feasible
problem sizes to up to about 20 variables (which involves about 1 million
vectors) for Problem 1. When the number of variables exceeds 20, computing
the selection criterion might become intractable, while Hansel’s algorithm will
most likely still perform the best on the average. When creating the chain
partition used in Hansel (1966) and Sokolov (1982) becomes intractable,
perhaps finding border vectors one at a time by using the subroutine FIND-
BORDER is still computationally feasible.

Problem 2 focused on the extension of the single monotone Boolean
function inference problem to the inference of a pair of nested monotone
Boolean functions. The benefits of this research are manyfold. First, it shows
how the optimal and selection criterion approach to minimizing the average
query complexity is extended to three different inference applications using a
pair of nested monotone Boolean functions. The selection criteria seem to be
good choices for the nested inference problem. They result in a slight increase
in the average query complexity for the chain poset. For the poset {0,1}n, they
are optimal for n = 1, 2, 3 and are probably very close to optimal for n greater
than 3.

Second, it demonstrates how the nested monotone Boolean function model
often is sufficient (i.e., a more complex model is not needed) and necessary
(i.e., simpler models are not sufficient) for a wide variety of real world
applications. Suppose a simpler model, such as a single monotone Boolean
function, is used for these applications. At best, the simpler model will provide
a poor approximation of the phenomenon under study. At worst, it will be
unable to model the phenomenon. Suppose a more complex model, such as a
pair of independent monotone Boolean functions, is used for these applications.
Then, at the very least, the query complexity will increase. In addition, the
inferred functions may lead to conflicting knowledge and are more likely to
contain errors.

Third, it quantifies the reduction in query complexity due to the nestedness
assumption. The improvement due to the nestedness assumption is between 6%
and 8% for larger chain posets (h > 50). This improvement is greater for smaller
chain posets, reaching its maximum of 20% for h = 2. In general, the average
query complexity on the chain poset is O(log(h)), so this improvement is not
very significant. For the poset {0,1}n, this improvement is a few percent points
for n > 8. This improvement decreases with the number of variables, reaching
its maximum of 20% for n = 1. The average query complexity on the poset
{0,1}n is exponential in n. This fact makes this improvement far more dramatic
than for the chain poset.



185Chapter 4:  Discovering Rules that Govern Monotone Phenomena

Fourth, it compares the efficiency of the three major types of oracles. The
three-valued oracle provides the most significant restriction on the oracles. It
causes up to 84% and 55% increase in the average number of queries for the
chain poset and the poset {0,1}n, respectively. It is interesting to observe that
the sequential oracles are just as efficient as the unrestricted oracles on the
chain poset and for the poset {0,1}n for n up to 4. This implies that the pair of
nested monotone Boolean functions defined on these posets can be inferred
sequentially without losing optimality. For the poset {0,1}n with n > 7, the
sequential oracle causes a significant increase in the average query complexity
of 12-33%.

The maximum likelihood ratio approach to modeling the inference process
of Problem 3 yielded a number of benefits. It was demonstrated that an
appropriately defined guided learner, such as maximizing the expected
maximum likelihood ratio (max )8(v)) or randomly selecting inferred border
vectors (v 0 LU(f*) c UZ(f*)), allowed the maximum likelihood ratio to
converge to 1, even when the misclassification probability was not fixed. This
avoids the bias problems associated with the variance approach reported in
Cohn (1996), and also observed with the selection criterion max(E0(v) + E1(v))
which is based on the number of errors.

For complete reconstruction of monotone Boolean functions, the guided
approach showed a dramatic reduction in the average number of queries over
a passive learner. The simulations also indicated that this improvement grows
at least exponentially as the number of variables n and the error rate q increase.
Thus, defining an appropriate and efficient selection criterion is even more
beneficial for large problems and applications with a high error rate. 

For large problems (i.e., n > 5), it may not be possible to compute the
selection criterion max )8(v) since it takes exponential time (in the size of the
query domain V) to do so. For such problems, queries can be selected randomly
from the border vectors (v 0 LU(f*) c UZ(f*)). This only takes O(V) time, and
results in much fewer queries than completely random selection on the average.

Hierarchical decomposition provides a way to address a large inference
problem as a set of smaller independent inference problems. Even though it was
not mentioned earlier, this decomposition is applicable to all three Problems 1,
2, and 3 where it can dramatically reduce the query complexity. Perhaps the
greatest benefit of this decomposition is its simplified queries. This fact may
not only improve the efficiency but also reduce the number of human errors,
and hence increase the likelihood of inferring the correct function.

5.2 Significance of the Research Findings



186 Data Mining & Knowledge Discovery Based on Rule Induction

The single most important discovery described in this chapter is the near
optimal selection criteria which take polynomial time to evaluate. This leads to
the efficient inference of monotone Boolean functions. The significance of
these criteria is further strengthened by the scope of real-life problems that can
be modeled by using monotone Boolean functions. Even though only one (or
a pair of nested) monotone Boolean function(s) defined on the set of Boolean
vectors {0,1}n were studied here, the selection criterion approach to guiding the
learner is appropriate for any monotone mapping V 6 F, where the sets V dún

and F dúr are both finite. The query domain can be viewed as a finite poset by
using the monotonicity constraints: fi(v) # fi(w) iff v ˜ w, for I = 1, 2, ..., r, and
whatever the relationships between the functions are, such as the nestedness
constraints: f1(v) $ f2(v) œ v 0 V. The selection criteria can be evaluated for any
such poset in order to pinpoint “smart” queries.

Once the border vectors have been established for each monotone function,
they can be used to classify new observations. In addition, they can be
represented by a (set of) monotone Boolean function(s) defined on a set of
Boolean variables. Representing the inferred knowledge in this intuitive manner
is perhaps the most important aspect of this problem when human interaction
is involved since people tend to make better use of knowledge they can easily
interpret, understand, validate, and remember. 

The use of Boolean functions for analyzing fixed datasets has recently
gained a momentum due their simple representation of intuitive knowledge. See
Triantaphyllou and Soyster (1996b), Boros et al. (1995), Torvik et al. (1999),
and Yilmaz et al. (2003) for example. Boolean models are also becoming more
popular because methods for solving their related hard logical optimization
problems are emerging (e.g., Triantaphyllou (1994), Chandru and Hooker
(1999), Hooker (2000), and Felici and Truemper (2002)). Some initial studies
on guided inference of Boolean functions from fixed datasets are provided in
Triantaphyllou and Soyster (1996a) and Nieto-Sanchez et al. (2002).

The narrow vicinity hypothesis proposed by Kovalerchuk et al. (2000a)
suggests that the use of the monotonicity assumption is often necessary and
sufficient. As such, it can greatly improve upon knowledge representations that
are too simple or too complex. This chapter demonstrated that the problem of
guided inference in the presence of monotonicity can be of great benefit in a
wide variety of important real-life applications. 

5.3 Future Research Directions

As mentioned in section 5.2 the selection criterion approach to learning
monotone Boolean functions defined on {0,1}n is applicable in the much more



187Chapter 4:  Discovering Rules that Govern Monotone Phenomena

general monotone setting: V 6 F, where the sets V dún and F dúr are both
finite. The monotone mapping V 6 F, where the set V dún is infinite and the set
F dúr is finite, forms another intriguing problem. It is well known that binary
search is optimal when the query domain V is a bounded subset of the real line,
and F = {0,1}. However, when the set V is multidimensional and infinite (e.g.,
V = [a, b]2), pinpointing the optimal queries is a much more complex problem.
The selection criterion min |K1 - K0| can be modified to accommodate this case
too. Let U denote the unclassified set (i.e., a subset of V) and let the parameters
K0(v) and K1(v) now denote the size of the subsets {w 0 U: w — v} and {w 0 U:
v — w}, respectively. For example, Kz(v) is measured in terms of distance, area,
volume, etc. when n = 1, 2, 3, etc., respectively. The selection criterion min |K1
- K0| is then optimal for n = 1. How well this criterion performs when n > 1, is
an open question.

For the problems considered in this chapter, the selection criteria attempt to
minimize the average query costs. This objective is based on certain
assumptions of the query costs (fixed cost of querying an oracle in Problems 1,
2, and 3, and highly disproportionate or equal query costs for the two oracles
in Problems 2.1 and 2.3, respectively). It would be interesting to see how the
dialogue with the oracle(s) changes as these assumptions are modified. When
dealing with two oracles, it may be that the cost of querying the first oracle may
be less than, yet of similar magnitude as, the cost of querying the second oracle.
In this case, the first few queries should be directed at the first oracle. After a
few queries it may be cost beneficial to begin alternating between the two
oracles. It could also be that the order of the queries has an effect on the total
inference cost. In some applications, additional properties may be known about
the underlying function. Some applications may put a limit on the number of
lower units, shifting the focus of the optimal vertices from the vertical center
to the vertical edge of the poset. It may be that the underlying function belongs
to a subclass of monotone Boolean functions, such as threshold functions, 2-
monotonic functions, etc.

6. CONCLUDING REMARKS

The methodologies presented in this chapter provide a framework for solving
diverse and potentially very important real-life problems that can be modeled
as guided inference problems in the presence of monotonicity. The benefits of
these methodologies were shown to be dramatic for the specific problems
studied here. However, these research findings are just the tip of the iceberg.
The interested reader is referred to Torvik and Triantaphyllou (2002, 2003,
2004) for further details on the methodology for Problems 1, 2, and 3,
respectively.



188 Data Mining & Knowledge Discovery Based on Rule Induction

ACKNOWLEDGMENTS
The authors are very appreciative for the support by the U.S. Navy, Office of
Naval Research (ONR), research grants N00014-95-1-0639 and N00014-97-1-
0632.

REFERENCES

M. Ayer, H.D. Brunk, G.M. Ewing, W.T. Reid, and E. Silverman, “An Empirical Distribution
Function for Sampling with Incomplete Information,” Annals of Mathematical Statistics, Vol.
26, pp. 641-647, 1955.

A. Ben-David. “Automatic Generation of Symbolic Multiattribute Ordinal Knowledge-Based
DSSs: Methodology and Applications,” Decision Sciences, Vol. 23, No. 6, pp. 1357-1372,
1992.

A. Ben-David, “Monotonicity Maintenance in Information-Theoretic Machine Learning
Algorithms,” Machine Learning, Vol. 19, No. 1, pp. 29-43, 1995.

J.C. Bioch and T. Ibaraki, “Complexity of Identification and Dualization of Positive Boolean
Functions,” Information and Computation, Vol. 123 pp. 50-63, 1995.

D.A. Bloch and B. W. Silverman, “Monotone Discriminant Functions and Their Applications
in Rheumatology,” Journal of the American Statistical Association, Vol. 92, No. 437, pp.
144-153, 1997.

H. Block, S. Qian, and A. Sampson, “Structure Algorithms for Partially Ordered Isotonic
Regression,” Journal of Computational and Graphical Statistics, Vol. 3, No. 3, pp. 285-300,
1994.

E. Boros, P.L. Hammer, and J.N. Hooker, “Predicting Cause-Effect Relationships from
Incomplete Discrete Observations,” SIAM Journal on Discrete Mathematics, Vol. 7, No. 4,
pp. 531-543, 1994.

E. Boros, P.L. Hammer, and J.N. Hooker, “Boolean Regression,” Annals of Operations
Research, Vol. 58, pp. 201-226, 1995.

E. Boros, P.L. Hammer, T. Ibaraki., and K. Makino, “Polynomial-Time Recognition of 2-
Monotonic Positive Boolean Functions Given by an Oracle,“ SIAM Journal on Computing,
Vol. 26, No. 1, pp. 93-109, 1997.

V. Chandru and J.N. Hooker, “Optimization Methods for Logical Inference,” John Wiley &
Sons, New York, NY, USA, 1999.

R. Church, “ Numerical Analysis of Certain Free Distributive Structures,” Duke Mathematical
Journal, Vol. 6, pp. 732-734, 1940.

R. Church, “Enumeration by Rank of the Free Distributive Lattice with 7 Generators,” Notices
of the American Mathematical Society, Vol. 11 pp. 724, 1965.

D.A. Cohn, “Neural Network Exploration Using Optimal Experiment Design,” Neural Networks,
Vol. 9, No. 6, pp. 1071-1083, 1996.

D.A. Cohn, “Minimizing Statistical Bias with Queries,” A.I. Memo No. 1552, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA, 1995.



189Chapter 4:  Discovering Rules that Govern Monotone Phenomena

T.H. Cormen, C.H. Leiserson, and R.L. Rivest, “Introduction to Algorithms,” The MIT Press,
Cambridge, MA, USA, 1997.

R. Dedekind, R, “Ueber Zerlegungen von Zahlen durch ihre Grössten Gemeinsamen Teiler,”
Festschrift Hoch. Brauhnschweig u. ges Werke II, pp. 103-148, 1897.

T. Eiter and G. Gottlob, “Identifying the Minimal Transversals of a Hypergraph and Related
Problems,” SIAM Journal on Computing, Vol. 24, No. 6, pp. 1278-1304, 1995.

K. Engel. Encyclopedia of Mathematics and its Applications 65: Sperner Theory,” Cambridge
University Press, Cambridge, MA, USA, 1997.

V.V. Federov, ”Theory of Optimal Experiments,” Academic Press, New York, NY, USA, 1972.
G. Felici and K. Truemper, “A MINSAT Approach for Learning in Logic Domains,” INFORMS

Journal on Computing, Vol. 14, No. 1, pp. 20-36, 2002.
M.L. Fredman and L. Khachiyan, “On the Complexity of Dualization of Monotone Disjunctive

Normal Forms,” Journal of Algorithms, Vol. 21, pp. 618-628, 1996.
D.N. Gainanov, “On One Criterion of the Optimality of an Algorithm for Evaluating Monotonic

Boolean Functions,”U.S.S.R. Computational Mathematics and Mathematical Physics, Vol.
24, No. 4, pp. 176-181, 1984.

G. Hansel, ”Sur Le Nombre Des Foncions Booleenes Monotones De n Variables,” C. R. Acad.
Sc. Paris, Vol. 262, pp. 1088-1090, 1966.

J.N. Hooker, “Logic Based Methods for Optimization,” John Wiley & Sons, New York, NY,
USA, 2000.

D.G. Horvitz and D.J. Thompson, “A Generalization of Sampling without Replacement from
a Finite Universe,” Journal of the American Statistical Association, Vol. 47, pp. 663-685,
1952.

D.H. Judson, “On the Inference of Semi-coherent Structures from Data,” A Master’s Thesis,
University of Nevada, Reno, NV, USA, 1999.

D.H. Judson, “A Partial Order Approach to Record Linkage,” Federal Committee on Statistical
Methodology Conference, November 14-16, Arlington, VA, USA, 2001.

A.V. Karzanov, “Determining the Maximal Flow in a Network by the Method of Preflows,”
Soviet Mathematics Doklady, Vol. 15, pp. 434-437, 1974.

A.D. Korshunov, On the Number of Monotone Boolean Functions,” Problemy Kibernetiki, Vol.
38, pp. 5-108, 1981 (in Russian).

B. Kovalerchuk, E. Triantaphyllou, and A.S. Deshpande, “Interactive Learning of Monotone
Boolean Functions,” Information Sciences, Vol. 94, pp. 87-118, 1996.

B. Kovalerchuk, E. Triantaphyllou, J.F. Ruiz, V.I. Torvik, and E. Vitayev, “The Reliability Issue
of Computer-Aided Breast Cancer Diagnosis,” Computers and Biomedical Research, Vol.
33, pp. 296-313, 2000a. 

B. Kovalerchuk, B. and E. Vityaev, “Data Mining in Finance,” Kluwer Academic Publishers,
Boston, MA, USA, 2000b.

C.I.C. Lee, “The min-max Algorithm and Isotonic Regression,” The Annals of Statistics, Vol.
11, pp. 467-477, 1983.

D.J.C. MacKay, “Information-based Objective Functions for Active Data Selection,” Neural
Computation, Vol. 4, No. 4, pp. 589-603, 1992.

K. Makino and T. Ibaraki, “A Fast and Simple Algorithm for Identifying 2-Monotonic Positive



190 Data Mining & Knowledge Discovery Based on Rule Induction

Boolean Functions,” Proceedings of ISAACS’95, Algorithms and Computation, Springer-
Verlag, Berlin, Germany, pp. 291-300, 1995.

K. Makino and T. Ibaraki, “The Maximum Latency and Identification of Positive Boolean
Functions,” SIAM Journal on Computing, Vol. 26, No. 5 , pp. 1363-1383, 1997.

K. Makino, T. Suda, H. Ono, and T. Ibaraki, “Data Analysis by Positive Decision Trees. IEICE
Transactions on Information and Systems , Vol. E82-D, No. 1, pp. 76-88, 1999.

S. Nieto-Sanchez, E. Triantaphyllou, J. Chen, and T.W. Liao, “An Incremental Learning
Algorithm for Constructing Boolean Functions From Positive and Negative Examples,”
Computers and Operations Research, Vol. 29, No. 12, pp. 1677-1700, 2002.

J.C. Picard, “Maximal Closure of a Graph and Applications to Combinatorial Problems,”
Management Science, Vol. 22, pp. 1268-1272, 1976.

T. Robertson, F.T. Wright, and R.L. Dykstra, “Order Restricted Statistical Inference. John
Wiley & Sons, New York, NY, USA, 1988

I. Shmulevich, “Properties and Applications of Monotone Boolean Functions and Stack Filters,”
A Ph.D. Dissertation, Department of Electrical Engineering, Purdue University, West
Lafayette, IN, USA, 1997.

N.A. Sokolov, “On the Optimal Evaluation of Monotonic Boolean Functions,” U.S.S.R.
Computational Mathematics and Mathematical Physics,” Vol. 22, No. 2, pp. 207-220, 1982.

C. Tatsuoka and T. Ferguson, “Sequential Classification on Partially Ordered Sets,” Technical
Report 99-05, Department of Statistics, The George Washington University, Washington,
D.C., USA, 1999.

E. Triantaphyllou, “Inference of a Minimum Size Boolean Function by Using a New Efficient
Branch-and-Bound Approach from Examples,” Journal of Global Optimization, Vol. 5 , pp.
69-84, 1994.

E. Triantaphyllou and A.L. Soyster, “An Approach to Guided Learning of Boolean Functions,”
Mathematical and Computer Modelling, Vol. 23, No. 3, pp 69-86, 1996a. 

E. Triantaphyllou and A.L. Soyster, “On the Minimum Number of Logical Clauses Which Can
be Inferred From Examples,” Computers and Operations Research, Vol. 23, No. 8, pp.
783-799, 1996b.

V.I. Torvik, E. Triantaphyllou, T.W. Liao and S.W. Waly, “Predicting Muscle Fatigue via
Electromyography: A Comparative Study,” Proceedings of the 25th International Conference
of Computers and Industrial Engineering, pp. 277-280, 1999.

V.I. Torvik and E. Triantaphyllou, “Minimizing the Average Query Complexity of Learning
Monotone Boolean Functions,” INFORMS Journal on Computing, Vol. 14, No. 2, pp. 144-
174, 2002.

V.I. Torvik and E. Triantaphyllou, “Guided Inference of Nested Monotone Boolean Functions.
Information Sciences, Vol. 151, 171-200, 2003. 

V.I. Torvik, M. Weeber, D.R. Swanson, and N.R. Smalheiser, “A Probabilistic Similarity Metric
for Medline Records: A Model for Author Name Disambiguation,” To appear in JASIST,
2004. 

V.I. Torvik and E. Triantaphyllou, “Guided Inference of Stochastic Monotone Boolean
Functions”, Under review 2004.

L.G. Valiant, “A Theory of the Learnable,” Communications of the ACM, Vol.  27, No. 11, pp.



191Chapter 4:  Discovering Rules that Govern Monotone Phenomena

1134-1142, 1984.
M. Ward, “Note on the Order of the Free Distributive Lattice,” Bulletin of the American

Mathematical Society, Vol. 52, No. 135, pp. 423, 1946.
D. Wiedemann, “A Computation of the Eight Dedekind Number,” Order, Vol. 8, pp. 5-6, 1991.
E. Yilmaz, E. Triantaphyllou, J. Chen, and T.W. Liao, “A Heuristic for Mining Association

Rules In Polynomial Time,” Mathematical and Computer Modelling, Vol. 37, No. 1-2, pp.
219-233, 2003. 



192 Data Mining & Knowledge Discovery Based on Rule Induction

AUTHORS’ BIOGRAPHICAL STATEMENTS

Dr. Torvik is a Research Assistant Professor in the Department of
Psychiatry at the University of Illinois at Chicago, where he is managing a
literature-based knowledge discovery project called Arrowsmith (jointly
funded by the National Library of Medicine and the National Institute of
Mental Health; PI: Neil R. Smalheiser, M.D., Ph.D.). He received his B.A. in
Mathematics from St. Olaf College in Northfield, MN in 1995, his M.S. in
Operations Research from the Oregon State University in Corvallis, OR in
1997, and his Ph.D. in Engineering Science from the Louisiana State
University in Baton Rouge, LA in 2002. His Ph.D. dissertation titled “Data
Mining and Knowledge Discovery: A Guided Approach Based on Monotone
Boolean Functions” was awarded the 2002 LSU Distinguished Dissertation
Award. His research interests include mathematical optimization and
computational statistics applied to literature-based knowledge discovery and
bioinformatics.

Dr. Triantaphyllou did his graduate studies at Penn State University from
1984 to 1990. While at Penn State, he earned a Dual M.S. degree in
Environment and Operations Research (OR), an M.S. degree in Computer
Science and a Dual Ph.D. degree in Industrial Engineering and Operations
Research.   Since the spring of 2005 he is a Professor in the Computer Science
Department at the Louisiana State University (LSU) in Baton Rouge, LA,
U.S.A., after he has served for 11 years as an Assistant, Associate, and Full
Professor in the Industrial Engineering Department at the same university.  He
has also served for one year as an Interim Associate Dean for the College of
Engineering at LSU.

His research is focused on decision-making theory and applications, data
mining and knowledge discovery, and the interface of operations research and
computer science.  Since the years he was a graduate student, he has developed
new methods for data mining and knowledge discovery and also has explored
some of the most fundamental and intriguing subjects in decision making.  In
1999 he has received the prestigious IIE (Institute of Industrial Engineers), OR
Division, Research Award for his research contributions in the above fields.
Some of his graduate students have also received awards and distinctions
including the Best Dissertation Award at LSU for Science, Engineering and
Technology for the year 2003. In 2000 Dr. Triantaphyllou published a
bestseller book on multi-criteria decision-making.  Also, in 2005 he published
a monograph on data mining and knowledge discovery, besides co-editing a
book on the same subject.  

He always enjoys sharing the results of his research with his students and
is also getting them actively involved in his research activities. He has received
teaching awards and distinctions. His research has been funded by federal and



193Chapter 4:  Discovering Rules that Govern Monotone Phenomena

state agencies, and the private sector.  He has extensively published in some of
the top refereed journals and made numerous presentations in national and
international conferences.  

Dr. Triantaphyllou has a strong inter-disciplinary background. He has
always enjoyed organizing multi-disciplinary teams of researchers and
practitioners with complementary expertise. These groups try to
comprehensively attack some of the most urgent problems in the sciences and
engineering. He is a strong believer of the premise that the next round of major
scientific and engineering discoveries will come from the work of such inter-
disciplinary groups. More details of his work can be found in his web site
(http://www.imse.lsu.edu/vangelis/ ).


