LIST OF TABLES

Chapter A COMM	1 DN LOGIC APPROACH TO DATA MINING	
AND PAT	FERN RECOGNITION, by A. Zakrevskij	1
Table 1.	The Dependency of E on r Under Fixed n and m	14
Table 2.	The Dependency of the Maximum Rank r_{max} on the Parameters <i>n</i> and <i>m</i>	15
Table 3.	Finding All the Occurring Pairs of the Attribute Values Generated by the Element 01001	17
Table 4.	Finding All the Occurring Pairs of the Attribute Values Generated by the Selection <i>F</i>	17
Table 5.	Forecasting the Value of the Attribute x_i	29
Chapter	2	
THE ONE	CLAUSE AT A TIME (OCAT)	
APPROAC	CH TO DATA MINING AND	
KNOWLE	DGE DISCOVERY, by E. Triantaphyllou	45
Table 1.	Continuous Observations for Illustrative Example	54
Table 2(a).	The Binary Representation of the Observations in the	
	Illustrative Example (first set of attributes for	
	each example)	56
Table 2(a).	The Binary Representation of the Observations in the	
	Illustrative Example (second set of attributes for	
	each example)	57
Chapter AN INCRE INFERRIN THE FRAN	3 CMENTAL LEARNING ALGORITHM FOR IG LOGICAL RULES FROM EXAMPLES IN MEWORK OF THE COMMON REASONING	
PROCESS	, by X. Naidenova	89
Table 1.	Example 1 of Data Classification	106
Table 2.	Structure of the Data	108
Table 3.	The Results of the Procedure DEBUT for the Examples of Class 2	120
Table 4.	The Result of Inferring GMRT's for the Examples	
	of Class 2	121
Table 5.	The Number of Combinations C_n^2 , C_n^3 , C_n^4 , as a Europian of <i>N</i>	121
Table 6	Tuncuon on N The Intersections of Example t with the Examples	121
Tuble 0.	of Class 2	123

XXX	Data Mining & Knowledge Discovery Based on Rule Inducti	on
Table 7.	The Projection of the Example t_2 on the Examples	
	of Class 2	123
Table 8.	The Result of Reducing the Projection after Deleting	
	the Values 'Brown' and 'Embrown'	124
Table 9.	Example 2 of a Data Classification	125
Table 10.	The Projection of the Value 'Tall' on the Set $R(+)$	126
Table 11.	The Projection of the Value 'Tall' on the Set $R(+)$	
	without the Values 'Bleu' and 'Brown'	126
Table 12.	The Projection of the Value 'Tall' on the Set $R(+)$	
	without the Examples t_5 and t_7	127
Table 13.	The Result of Deleting the Value 'Tall' from the Set $R(+)$	127
Table 14.	The Result of Deleting t_5 , t_7 , and t_8 , from the Set $R(+)$	127
Table 15.	The Essential Values for the Examples t_5 , t_6 , t_7 , and t_8	128
Table 16.	The Data for Processing by the Incremental	
	Procedure INGOMAR	136
Table 17.	The Records of the Step-by-Step Results of the	
	Incremental Procedure INGOMAR	137
Table 18.	The Sets TGOOD (1) and TGOOD (2) Produced by the	
	Procedure INGOMAR	137
Table 19.	The Set of the Positive Examples $R(+)$	139
Table 20.	The Set of the Negative Examples $R(-)$	139
Table 21.	The content of S(test) after the DEBUT of the	
	Algorithm NIAGaRa	140
Table 22.	The Contents of the set STGOOD after the DEBUT of	
	the Algorithm NIAGaRa	140
Table 23.	The Set Q after the DEBUT of the Algorithm NIAGaRa	141
Table 24.	The Extensions of the Elements of <i>S</i> (test)	141
Table 25.	The Sets STGOOD and TGOOD for the Examples	
	in Tables 19 and 20	142
Table 26.	The Set <i>SPLUS</i> of the Collections <i>splus(A)</i> for all A's	
	in Tables 19 and 20	142

Chapter 4

DISCOVERING RULES THAT GOVERN MONOTONE	
PHENOMENA, by V.I. Torvik and E. Triantaphyllou	149
Table 1.History of Monotone Boolean Function Enumeration	159
Table 2.A Sample Data Set for Problem 3	170
<i>Table 3.</i> Example Likelihood Values for All Functions in M_3	171
<i>Table 4.</i> Updated Likelihood Ratios for $m_z(001) = m_z(001) + 1$	173
Table 5. The Representative Functions Used in the	
Simulations of Problem 3	179
Table 6.The Average Number of Stage 3 Queries Used by the	

	٠
VVV	1
X X X	L
	-

Evaluative Criterion max $\Delta\lambda$ (v) to Reach $\lambda > 0.99$ in	
Problem 3 Defined on $\{0,1\}$ with Fixed Misclassification	
Probability q	182

Chapter 5 LEARNING LOGIC FORMULAS AND RELATED

ERROR DIS	TRIBUTIONS, by G. Felici, F. Sun, and K. Truemper	193
Table 1.	Estimated $\hat{F}_{A}(z)$ and $\hat{G}_{B}(z)$	215

Chapter 6 FEATURE SELECTION FOR DATA MINING

by V. de Ang	elis, G. Felici, and G. Mancinelli	227
Table 1.	Functions Used to Compute the Target Variable	242
Table 2.	Results for Increasing Values of γ	243
Table 3.	Results for Different Random Seeds for Classification	
	Function A	244
Table 4.	Results for Larger Instances for Classification	
	Function A	244
Table 5.	Results for Classification Functions B, C, and D	244
Table 6.	Performances with Duplicated Features on Classification	
	Function A	245
Table 7.	Solution Times for Different Size Instances and	
	Parameters for Classification Function A	245
Table 8.	Solution Times for Different Size Instances and	
	Parameters for Classification Functions D, E, F	246
Table 9.	Logic Variables Selected by FSM3-B with $k_1=5$, $k_2=20$	
	and $\gamma = 0$	247
Table 9.	Logic Variables Selected by FSM3-B with k_1 =10, k_2 =20	
	and $\gamma=2.00$	247

Chapter 7

TRANSFO	RMATION OF RATIONAL AND SET DATA TO	
LOGIC DA	ATA, by S. Bartnikowski, M. Granberry, J. Mugan,	
and K. Truemper		253
Table 1.	σ as a Function of N for $\sigma \le 10$ and $p = q = 0.5$	269
Table 2.	Performance of Cut Point vs. Entropy	275

Chapter 8

-				
DATA FARMING:	CONCEPTS	AND METHODS,	, by A. Kusiak	279

Chapter 9 RULE INDUCTION THROUGH DISCRETE SUPPORT

VECTOR I	DECISION TREES, by C. Orsenigo and C. Vercellis	305
Table 1.	Accuracy Results – Comparison among FDSDT _{SLP}	
	and Alternative Classifiers	320
Table 2.	Accuracy Results – Comparison among FDSDT _{SLP} and	
	its Variants	322
Table 3.	Rule Complexity – Comparison among Alternative	
	Classifiers	323
Chantar	10	
	IV TRIDUTE DECISION TREES AND	
MULTI-AI	I KIBUTE DECISION TREES AND	227
DECISION	RULES, by JY. Lee and S. Olaisson	327
Table I.	A Simple Classification Problem	344
Chapter	11	
KNOWLEI	OGE ACOUISITION AND UNCERTAINTY IN	
FAULT DL	AGNOSIS: A ROUGH SETS PERSPECTIVE,	
by LY. Zh	ai, LP. Khoo, and SC. Fok	359
Table 1.	Information Table with Inconsistent Data	367
Table 2.	Information Table with Missing Data	367
Table 3.	A Comparison of the Four Approaches	373
Table 4.	A Typical Information System	378
Table 5.	Machine Condition and Its Parameters	385
Table 6.	Machine Condition after Transformation	385
Table 7.	Rules Induced by ID3 and the RClass System	386
Table 8.	Process Quality and Its Parameters	386
Table 9.	Process Quality (after Transformations)	387
Table 10.	Rules Introduced by ID3 and the RClass System for	
·	the Second Illustrative Example	388
Chanter	12	
DISCOVEL		
DISCOVER	UNG KNOWLEDGE NUGGETS WITH A GENETIC	

ALGORITHM, by E. Noda and A.A. Freitas		395
Table 1.	Accuracy Rate (%) in the Zoo Data Set	420
Table 2.	Accuracy Rate (%) in the Car Evaluation Data Set	420
Table 3.	Accuracy Rate (%) in the Auto Imports Data Set	421
Table 4.	Accuracy Rate (%) in the Nursery Data Set	422
Table 5.	Rule Interestingness (%) in the Zoo Data Set	424
Table 6.	Rule Interestingness (%) in the Car Evaluation Data Set	424
Table 7.	Rule Interestingness (%) in the Auto Imports Data Set	425
Table 8.	Rule Interestingness (%) in the Nursery Data Set	425
Table 9.	Summary of the Results	427

xxxii

Chapter 13

DIVERSITY	MECHANISMS IN PITT-STYLE	
EVOLUTION	NARY CLASSIFIER SYSTEMS, by M. Kirley,	
H.A. Abbass	and R.I. McKay	433
Table 1.	Results for the Five Data Sets-Percentage and	
	Standard Deviations for Accuracy, Coverage and	
	Diversity from the Stratified Ten- Fold Cross-Validation	
	Runs Using Island Model and Fitness Sharing	450
Table 2.	Results for the Five Data Sets -Percentage and	
	Standard Deviations for Accuracy, Coverage and	
	Diversity from the Stratified Ten-Fold Cross-Validation	
	Runs Using Island Model Without Island Model	451
Table 3.	Results for the Five Data Sets-Percentage and	
	Standard Deviations for Accuracy, Coverage and	
	Diversity from the Stratified Ten-Fold Cross-Validation	
	Runs Using Fitness Sharing without Island Model	451
Table 4.	Results for the Five Data Sets-Percentage and	
	Standard Deviations for Accuracy, Coverage and	
	Diversity from the Stratified Ten-Fold Cross-Validation	
	Runs without Fitness Sharing or Island Model	452
Chanter 14	4	
FUZZY LOG	IC IN DISCOVERING ASSOCIATION	
RULES: AN	OVERVIEW, by G. Chen, O. Wei and E.E. Kerre	459
Table 1.	Example of a Transaction Dataset T and a Binary	
	Database D	466
Table 2.	Database D with Continuous Domains	467
Table 3.	Database D' Transformed from D by Partitioning	
	Domains	467
Table 4.	Database D'' (in part) with Fuzzy Items	468
Table 5.	Example of Extended Database D_G in Accordance	
	with \hat{G} in Figure 2 (a)	471
Table 6.	Example of Extended Database D_{Gf} in Accordance	
	with G_f in Figure 2(b)	472
Chantar 14	F	
Unapter 13	3	

MINING HUMAN INTERPRETABLE KNOWLEDGE WITH FUZZY MODELING METHODS: AN OVERVIEW,

by T.W. Liao

495

Chapter 16 DATA MINING FROM MULTIMEDIA PATIENT RECORDS, by A.S. Elmaghraby, M.M. Kantardzic, and M.P. Wachowiak 551 Table 1. Integrated Computerized Medical Record Characteristics 562 Chapter 17 LEARNING TO FIND CONTEXT BASED SPELLING ERRORS, by H. Al-Mubaid and K. Truemper 597 Table 1. **Text Statistics** 609 Table 2. Learning Cases 610 Table 3. Large Testing Text Cases 611 Table 4. Error Detection for Large Testing Texts 611 Table 5. Small Testing Texts 612 Table 6. Small Testing Text Cases 612 Error Detection for Small Testing Texts Table 7. 613 Table 8. Performance of Ltest Compared with BaySpell and WinSpell 614 Chapter 18 **INDUCTION AND INFERENCE WITH FUZZY RULES** FOR TEXTUAL INFORMATION RETRIEVAL, by J. Chen, D.H. Kraft, M.J. Martin-Bautista, and M. -A., Vila 629 Portions of the EDC Database Used in Table 1. this Study 636 Table 2. The Prediction of Interestingness of Unseen Web Pages 645 Table 3. The Precisions of Queries vs. Number of Top Web Pages 645 Chapter 19 STATISTICAL RULE INDUCTION IN THE PRESENCE OF PRIOR INFORMATION: THE BAYESIAN RECORD LINKAGE PROBLEM, by D.H. Judson 655 Table 1. An Illustration of the Comparison Between Two Records 662 Table 2. Parameters for the Simulated Data 670 Table 3. Three Fictional Address Parsings, and the Comparison Vector Between Record One and Record Two 672 Table 4. Parameters, Computer Notation, and Their Interpretation for the Simulated Data 673 Table 5. Results from the MCMC Estimation of Posterior **Distributions of Simulated Parameters** 675 Table 6. Estimated Posterior Probability that the Records

ble 6. Estimated Posterior Probability that the Records are a Match, for All Possible Field Configurations and

xxxiv

	the Estimated Logistic Regression Parameters-	
	Relatively Uninformative Priors Condition	676
Table 7.	Results from the MCMC Estimation of Posterior	
	Distributions of Simulated Parameters	677
Table 8.	Estimated Posterior Probability that the Records	
	are a Match, for All Possible Field Configurations	
	and the Estimated Logistic Regression Parameters	
	Informative Priors Condition	678
Table 9.	Associated Matching Fields, Parameters, Computer	
	Notation and their Interpretation for CPS Address Data	682
Table 10.	Results From the MCMC Estimation of Posterior	
	Distributions of CPS Address Field Parameters	684
Table 11.	Posterior Median Estimates Converted to Approximate	
	Probabilities	685
Table 12.	Posterior Probability Calculations for all Obtained	
	Comparison Vectors	687
Chanter	20	
Cnapter		
FUTURE 1	TRENDS IN SOME DATA MINING AREAS.	

by X. Wang, P. Zhu, G. Felici, and E. Triantaphyllou	695

xxxvi