LIST OF FIGURES

Chapter	1	
A COMMO	ON LOGIC APPROACH TO DATA MINING	
AND PAT	TERN RECOGNITION, by A. Zakrevskij	1
Figure 1.	Using a Karnaugh Map to Find a Decision Boolean	
-	Function	3
Figure 2.	Illustrating the Screening Effect	19
Figure 3.	A Search Tree	25
Figure 4.	The Energy Distribution of the Pronunciation of the	
-	Russian Word "nool" (meaning "zero")	39
Chapter	2	
THE ONE	CLAUSE AT A TIME (OCAT)	
APPROAC	CH TO DATA MINING AND	
KNOWLE	DGE DISCOVERY, by E. Triantaphyllou	45
Figure 1.	The One Clause At a Time Approach (for the CNF case)	59
Figure 2.	Continuous Data for Illustrative Example	
	and Extracted Sets of Classification Rules	63
Figure 3.	The RA1 Heuristic [Deshpande and Triantaphyllou, 1998]	67
Figure 4.	The Rejectability Graph for E^+ and E^-	74
Figure 5.	The Rejectability Graph for the Second Illustrative	
	Example	75
Figure 6.	The Rejectability Graph for the new Sets E^+ and E^-	80
Chapter	3	
AN INCRE	EMENTAL LEARNING ALGORITHM FOR	
INFERRIN	NG LOGICAL RULES FROM EXAMPLES IN	
THE FRA	MEWORK OF THE COMMON REASONING	
PROCESS	, by X. Naidenova	89
Figure 1.	Model of Reasoning. a) Under Pattern Recognition	
	b) Under Learning	93
Figure 2.	The Beginning of the Procedure for Inferring GMRTs	116
Figure 3.	The Procedure for Determining the Set of Indices for	
	Extending <i>s</i>	117
Figure 4.	The Procedure for Generating All Possible	
	Extensions of <i>s</i>	118
Figure 5.	The Procedure for Analyzing the Set of Extensions of s	119
Figure 6.	The Main Procedure NIAGaRa for inferring GMRTs	120
Figure 7.	The Algorithm DIAGaRa	130
Figure 8.	The Procedure for Generalizing the Existing GMRTs	133

xxiv	Data Mining & Knowledge Discovery Based on Rule Indu	ction
Figure 9.	The Procedure for Preparing the Data for Inferring the	
	GMRTs Contained in a New Example	134
Figure 10.	The Incremental Procedure INGOMAR	135
Chapter 4	4	
-	ING RULES THAT GOVERN MONOTONE	
PHENOME	NA, by V.I. Torvik and E. Triantaphyllou	149
Figure 1.	Hierarchical Decomposition of the Breast Cancer	
_	Diagnosis Variables	156
Figure 2.	The Poset Formed by $\{0,1\}^4$ and the Relation ~	157
Figure 3.	The Average Query Complexities for Problem 1	175
Figure 4.	The Average Query Complexities for Problem 2	177
Figure 5.	Increase in Query Complexities Due to Restricted	

1 18410 5.	mereuse in Query Complexities Due to Restricted	
	Access to the Oracles	178
Figure 6.	Reduction in Query Complexity Due to the	
	Nestedness Assumption	178
Figure 7.	Average Case Behavior of Various Selection	
	Criteria for Problem 3	181
Figure 8.	The Restricted and Regular Maximum Likelihood	
	Ratios Simulated with Expected $q = 0.2$ and $n = 3$	183

Chapter 5

LEARNING LOGIC FORMULAS AND RELATED

ERROR DIS	TRIBUTIONS, by G. Felici, F. Sun, and K. Truemper	193
Figure 1.	Distributions for $Z = Z_A$ and $Z = Z_B$ and related Z'	217
Figure 2.	Estimated and verified F_A and G_B for Breast Cancer	218
Figure 3.	Estimated and verified F_A and G_B for Australian	
	Credit Card	219
Figure 4.	Estimated and verified F_A and G_B for Congressional	
	Voting	220
Figure 5.	Estimated and verified F_A and G_B for Diabetes	220
Figure 6.	Estimated and verified F_A and G_B for Heart Disease	221
Figure 7.	Estimated and verified F_A and G_B for Boston Housing	221

227

231

Chapter 6

FEATURE SELECTION FOR DATA MINING

by V. de Angelis, G. Felici, and G. Mancinelli

Figure 1. Wrappers and Filters

Chapter 7

TRANSFORMATION OF RATIONAL AND SET DATA TO LOGIC DATA, by S. Bartnikowski, M. Granberry, J. Mugan,

List	of	Figures
------	----	---------

and K. Truemper

XXV

253

Chapter 8		
	MING: CONCEPTS AND METHODS, by A. Kusiak	279
Figure 1.	A Data Set with Five Features	284
Figure 2.	Rule Set Obtained from the Data Set in Figure 1	284
Figure 3.	Modified Data Set with Five Features	285
Figure 4.	Two Rules Generated from the Data Set of Figure 3	285
Figure 5.	(Part 1). Cross-validation Results: (a) Confusion Matrix for the Data Set in Figure 1, (b) Confusion Matrix for	
	the Modified Data Set of Figure 3	286
Figure 5.	(Part 2). Cross-validation Results; (c) Classification	
0	Accuracy for the Data Set of Figure 1,	
	(d) Classification Accuracy for the Data Set in Figure 3	287
Figure 6.	A Data Set with Four Features	288
Figure 7.	Transformed Data Set of Figure 6	288
Figure 8.	Cross Validation Results: (a) Average Classification	
0	Accuracy for the Data Set in Figure 6,	
	(b) Average Classification Accuracy for the	
	Transformed Data Set of Figure 7	289
Figure 9.	Data Set and the Corresponding Statistical	
0	Distributions	290
Figure 10.	Rule-Feature Matrix with Eight Rules	291
Figure 11.	Structured Rule-Feature Matrix	291
Figure 12.	Visual Representation of a Cluster of Two Rules	294
Figure 13.	A Data Set with Five Features	296
Figure 14.	Rules from the Data Set of Figure 13	296
Figure 15.	Rules Extracted from the Transformed Data Set	
0	of Figure 13	296
Figure 16.	Cross-validation Results: (a) Average Classification	
0	Accuracy for the Modified Data Set in Figure 13,	
	(b) Average Classification Accuracy of the Data Set	
	with Modified Outcome	297
Figure 17.	Average Classification Accuracy for the 599-Object	
0	Data Set	300
Figure 18.	Average Classification Accuracy for the 525-Object	
0	Data Set	301
Figure 19.	Average Classification Accuracy for the 525-Object	
3	Data Set with the Feature Sequence	301
	· · · · · · · · · · · · · · · · · · ·	

Chapter 9 RULE INDUCTION THROUGH DISCRETE SUPPORT

Figure 1.	DECISION TREES, by C. Orsenigo and C. Vercellis Margin Maximization for Linearly non Separable Sets	3 3
Figure 2.	Axis Parallel Versus Oblique Splits	3
1 1800 0 2.	This Futurier Versus Conque opnis	2
Chapter	10	
MULTI-A	FTRIBUTE DECISION TREES AND	
DECISION	RULES, by JY. Lee and S. Olafsson	3
Figure 1.	The SODI Decision Tree Construction Algorithm	3
Figure 2.	The SODI Rules for Pre-Pruning	3
Figure 3.	Decision Trees Built by (a) ID3, and (b) SODI	3
Figure 4.	Improvement of Accuracy Over ID3 for	
	SODI, C4.5, and PART	3
Figure 5.	Reduction in the Number of Decision Rules	
-	over ID3 for SODI, C4.5, and PART	3
Chapter		
	DGE ACQUISITION AND UNCERTAINTY IN	
	AGNOSIS: A ROUGH SETS PERSPECTIVE,	_
•	nai, LP. Khoo, and SC. Fok	3
Figure 1.	Knowledge Acquisition Techniques	3
Figure 2.	Machine Learning Taxonomy	3
Figure 3.	Processes for Knowledge Extraction	3
Figure 4.	Basic Notions of Rough Set Theory for	
	Illustrative Example	3
Figure 5.	Framework of the RClass System	3
Chapter	12	
1	RING KNOWLEDGE NUGGETS WITH A GENETIC	
ALGORIT	HM, by E. Noda and A.A. Freitas	3
Figure 1.	Pseudocode for a Genetic Algorithm at a High	
C	Level of Abstraction	4
Figure 2.	An Example of Uniform Crossover in	
0	Genetic Algorithms	4
Figure 3.	The Basic Idea of a Greedy Rule Induction Procedure	4
Figure 4.	Attribute Interaction in a XOR (eXclusive OR)	
0	Function	4
Figure 5.	Individual Representation	4
		4
Figure 5.	Examples of Condition Insertion/Removal Operations	- 4

DIVERSITY MECHANISMS IN PITT-STYLE

EVOLUTIONARY CLASSIFIER SYSTEMS, by M. Kirley,

xxvi

List	of	Figures
------	----	---------

495

H.A. Abbass and R.I. McKay		433
Figure 1.	Outline of a Simple Genetic Algorithm	437
Figure 2.	The Island Model.	446

Chapter 14

FUZZY LOGIC IN DISCOVERING ASSOCIATION		
RULES: AN	OVERVIEW, by G. Chen, Q. Wei and E.E. Kerre	459
Figure 1.	Fuzzy Sets Young(Y), Middle(M) and Old(O) with	
	Y(20, 65), M(25, 32, 53, 60), O(20, 65)	468
Figure 2.	Exact Taxonomies and Fuzzy Taxonomies	470
Figure 3.	Part of a Linguistically Modified Fuzzy Taxonomic	
	Structure	473
Figure 4.	Static Matching Schemes	485

Chapter 15

MINING HUMAN INTERPRETABLE KNOWLEDGE WITH	
FUZZY MODELING METHODS: AN OVERVIEW,	
by T.W. Liao	

Chapter 16

DATA MIN	ING FROM MULTIMEDIA PATIENT RECORDS,	
	aghraby, M.M. Kantardzic, and M.P. Wachowiak	551
Figure 1.	Phases of the Data Mining Process	555
Figure 2.	Multimedia Components of the Patient Record	558
Figure 3.	Phases in Labels and Noise Elimination for Digitized	
	Mammography Images	567
Figure 4.	The Difference Between PCA and ICA Transforms	570
Figure 5.	Three EMG/ECG Mixtures (left) Separated into EMG	
	and ECG Signals by ICA (right). Cardiac Artifacts in	
	the EMG are Circled in Gray (upper left)	572
Figure 6.	Sample of an Image of Size 5 x 5	577
Figure 7.	Feature Extraction for the Image in Figure 6 by Using	
	the Association Rules Method	578
Figure 8.	Shoulder Scan	585
Figure 9.	Parameter Maps: (a) INV (Nakagami Distribution);	
	(b) TP (Nakagami Distribution); (c) SNR Values	
	(<i>K</i> Distribution); (d) Fractional SNR (<i>K</i> Distribution)	587
Chantar 1	7	

Chapter 17

ERRORS, by H. Al-Mubaid and K. Truemper	597
---	-----

655

Chapter 18INDUCTION AND INFERENCE WITH FUZZY RULESFOR TEXTUAL INFORMATION RETRIEVAL, by J. Chen,D.H. Kraft, M.J. Martin-Bautista, and M. –A., Vila629

Chapter 19

STATISTICAL RULE INDUCTION IN THE PRESENCE OF PRIOR INFORMATION: THE BAYESIAN RECORD LINKAGE PROBLEM, by D.H. Judson *Figure 1.* File Processing Flowchart to Implement the Bayesian

1 18110 1.	The Treessing Tie wehat to implement the Dayesian		
-	Record Linkage	680	
Figure 2.	Posterior Kernel for Y[1]	683	
Figure 3.	Posterior Kernel for Y[2]	683	
Figure 4.	Posterior Kernel for mu[1,12]	683	
Figure 5.	Posterior Kernel for mu[1,15]	684	

Chapter 20

FUTURE TRENDS IN SOME DATA MINING AREAS,			
by X. Wan	g, P. Zhu, G. Felici, and E. Triantaphyllou	695	
Figure 1.	Parallel Coordinate Visualization	704	
Figure 2.	Dense Pixel Displays	704	
Figure 3.	Dimensional Stacking Visualization	705	

xxviii