Impact of DVFS on n-Tier Application Performance

Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Chien-An Lai, Masazumi Matsubara, Calton Pu

Resource Utilization Paradox

- Data centers are supposed to run at high utilization (for high return on investment)
- But servers in typical data centers are only utilized 18% time on average.

Gartner. [Dec 2010]

Why? SLA sensitive applications suffer from wide response time fluctuations at relatively low utilization (e.g., 60%) –[Wang et al. ICDCS'13]

One important reason: Bursty workload in web-facing applications

Bursty Workload

Web-facing n-tier applications

Workload fluctuates between high and low CPU
requirement -[Mi et al. Middleware08]

What's the Impact of DVFS on Bursty Workload?

- Dynamic Voltage and Frequency Scaling (DVFS) can help handle bursty workload.
 - Adjusting CPU voltage/frequency on-demand
- Potential mismatch between CPU requirement and DVFS adjustment
 - Workload burst length can be close to DVFS control period (e.g., 500ms)
- Evaluation using measurements and exploration using simulation

Experimental Setup

5

RUBBoS benchmark: a bulletin board system modeled after Slashdot
24 web interactions
CPU intensive
Default workload generator naturally bursty

Intel Xeon E5607
2 quad-core 2.26 GHz
16 GB memory

Support P0~P8

P0: (2.26GHz/1.35v) P8: (1.12 GHz/0.75v)

College of

Computing

Georgia Tech

Simulation Setup

Benefits of simulation:

- 1. Extension of experimental study
- 2. Abstraction from different levels of DVFS controller

 Parameterized from real experimental measurements
Default workload generator naturally bursty

DAPC Power Saving vs. Performance Degradation

High Utilization Saves More

Georgia Tech College of Computing

Two Kinds of Performance Problems

- Large Response Time Fluctuations
 - Due to the delay of CPU P-state adaptation on bursty workload

Throughput loss

Due to the rapidly oscillating bottlenecks
between different tiers -[Wang et al. Cloud'13]

Large Response Time Fluctuations

DAPC at WL 8,000

Response Time Fluctuations Caused by Queued Requests

Push-Back: Upstream Queuing Amplification

Queuing Amplification Can Happen in 500ms

Workload Burst Length: An Important Parameter

Georgia Tech

College of

Computing

Anti-Synchrony: Workload Burst Length vs. DAPC Adaptation Period

Solutions

Several candidate solutions

- Assume constant workload or batch workload
- ASSume Not for web-facing application Stay below the crossing point of transurements to find it

 - Significant research challenge
- **Short** DAPC adjustment period
 - High overhead
 - Throughput loss may still exist with a fixed adjustment period

Proposed solution: workload-sensitive adaptive control

Georgia

College of Computing

Workload-Sensitive Adaptive Control

- Disrupt the anti-synchrony between workload burst length and DVFS adaptation period
 - 1. "Learn" the average interval between workload bursts
 - 2. Keep appropriate DVFS control adaptation period (e.g., 5 times smaller than the estimated workload burst interval)

How Does It Work

"Learn" the interval between workload bursts using observed workload bursts and a simple moving-average model

Georgia

Tech

College of

Computing

Adaptive Controller Reduces Queue Length

Adaptive controller

Adaptive Control Achieves QoS and Energy Savings

Conclusion

- Significant performance degradation of n-tier web applications at high utilization
 - Large response time fluctuations due to the push-back phenomenon
 - Throughput loss due to rapidly alternating bottlenecks
- The cause is the anti-synchrony between DVFS adaptation period and workload burst length
- Workload-sensitive adaptive control is able to mitigate performance impact while saving power

Georgia

College of Computing

Thank You. Any Questions?

Qingyang Wang qywang@cc.gatech.edu

