
A Tree Projection Algorithm For Generation ofFrequent ItemsetsRamesh C. Agarwal, Charu C. Aggarwal, V.V.V. PrasadIBM T. J. Watson Research Center, Yorktown Heights, NY 10598E-mail: f agarwal, charu, vvprasad g@watson.ibm.comIn this paper we propose algorithms for generation of frequent itemsets bysuccessive construction of the nodes of a lexicographic tree of itemsets. Wediscuss di�erent strategies in generation and traversal of the lexicographictree such as breadth-�rst search, depth-�rst search or a combination ofthe two. These techniques provide di�erent trade-o�s in terms of the I/O,memory and computational time requirements. We use the hierarchicalstructure of the lexicographic tree to successively project transactions ateach node of the lexicographic tree, and use matrix counting on this reducedset of transactions for �nding frequent itemsets. We tested our algorithmon both real and synthetic data. We provide an implementation of the treeprojection method which is up to one order of magnitude faster than otherrecent techniques in the literature. The algorithm has a well structureddata access pattern which provides data locality and reuse of data for mul-tiple levels of the cache. We also discuss methods for parallelization of theTreeProjection algorithm.Key Words: association rules, data mining, caching, itemsetsCONTENTS1. Introduction.2. The Lexicographic Tree of Itemsets.3. Algorithmic strategies for lexicographic tree creation.4. Extensions to parallel association rule mining.5. Empirical Results.6. Conclusions and Summary. 1. INTRODUCTIONThe problem of �nding association rules was �rst introduced by Agrawal, Imielin-ski, and Swami [3]. This problem is concerned with �nding relationships betweendi�erent items in a database containing customer transactions. Such informationcan be used for many sales purposes such as target marketing, because the buyingpatterns of consumers can be inferred from one another.1

2 RAMESH AGARWAL, CHARU AGGARWAL, V.V.V. PRASADLet I be the set of all items in the database of transactions. A transaction T � Iis de�ned to be a set of items which are bought together in one operation. Anassociation rule between a set of items X � I and another set Y � I is expressedas X) Y , and indicates that the presence of the items X in the transaction alsoindicates a strong possibility of the presence of the set of items Y . The measuresused to indicate the strength of an association rule are support and con�dence. Thesupport of the rule X) Y is the fraction of the transactions containing both X andY . The con�dence of the rule X) Y is the fraction of the transactions containingX which also contain Y . A set of items is referred to as an itemset. We shall referto an itemset with k items in it as a k-itemset.In the association rule problem we wish to �nd all rules above a minimum levelof support and con�dence. The primary concept behind most association rulealgorithms is a two phase procedure: In the �rst phase, all frequent itemsets arefound. An itemset is said to be frequent if it satis�es a user-de�ned minimumsupport requirement. The second phase uses these frequent itemsets in order togenerate all the rules which satisfy the user speci�ed minimum con�dence.Since its initial formulation, considerable research e�ort has been devoted to theassociation rule problem. A number of algorithms for frequent itemset generationhave been proposed [1, 2, 4, 6, 11, 7, 12, 13, 16, 17]. Variations of association rulessuch as generalized association rules, quantitative association rules and multilevelassociation rules have been studied in [9, 14, 15]. In this paper, we present amethod which represents frequent itemsets as nodes of a lexicographic tree. Wecount the support of frequent itemsets by projecting the transactions onto the nodesof this tree. This signi�cantly improves the performance of counting the numberof transactions containing a frequent itemset. In a hierarchical manner, we lookonly at that subset of transactions which can possibly contain that itemset. This isdone by traversing the lexicographic tree in a top down fashion. The technique ofusing carefully chosen lexicographic extensions in order to generate itemsets havebeen discussed in [3, 6]. Our aim is to use the lexicographic tree as a frameworkupon which di�erent strategies for �nding frequent itemsets can be based. Mostother algorithms have utilized a hash tree to count frequent itemsets contained in atransaction. We believe our approach based on projecting transactions on nodes of alexicographic tree and then eventually counting against a matrix structure providesthe most e�cient method of counting itemsets at very low levels of support. Theadvantage of using matrix counting is that e�cient cache implementations canbe provided which improve substantially over the current implementations. Theexperimental results support this conclusion.This paper is organized as follows. In the next section we discuss the conceptof the lexicographic tree and a few key ideas which lay the groundwork for thedescription of our algorithm. In section 3, we will discuss the primary strategies forthe creation of the lexicographic tree, and the various trade-o�s associated with eachstrategy. We propose strategies for parallelization of the TreeProjection algorithmin section 4. In section 5, we discuss the empirical results, while section 6 containsthe conclusion and summary.2. THE LEXICOGRAPHIC TREE OF ITEMSETS

TREE PROJECTION ALGORITHM 3
Example ANull

ab ac ad af bc bd cd cf df

a b c d e

Level 0

Level 2

Level 1

Level 4

f

bcd cdf Level 3abc abd acd acf adf

acdf

Suppose that all nodes upto level 2 have

been examined and all nodes upto

level 3 have been generated.

Then the active nodes are illustrated

by the dotted circles.

 Node acdf is neither active nor inactive

since it has neither been examined nor

generated at this stage of the

algorithm.

FIG. 1. The lexicographic treeWe assume that a lexicographic ordering exists among the items in the database.In order to indicate that an item i occurs lexicographically earlier than j, we willuse the notation i �L j. The lexicographic tree is a structural representation of thefrequent itemsets with respect to this ordering. The lexicographic tree is de�ned inthe following way:(1) A vertex exists in the tree corresponding to each frequent itemset. The rootof the tree corresponds to the null itemset.(2) Let I = fi1; : : : ikg be a frequent itemset, where i1; i2 : : : ik are listed in lexi-cographic order. The parent of the node I is the itemset fi1; : : : ik�1g.The goal in this paper is to use the structure of the lexicographic tree in orderto substantially reduce the CPU time for counting frequent itemsets. An exampleof the lexicographic tree is illustrated in Figure 1. A frequent 1-extension of anitemset such that the last item is the contributor to the extension will be calleda frequent lexicographic tree extension, or simply a tree extension. Thus, eachedge in the lexicographic tree corresponds to an item corresponding to its frequentlexicographic tree extension. We will denote the set of frequent lexicographic treeextensions of a node P by E(P). In the example illustrated in Figure 1, the frequentlexicographic extensions of node a are b, c, d, and f .Let Q be the immediate ancestor of the itemset P in the lexicographic tree.The set of candidate branches of a node P is de�ned to be those items in E(Q)which occur lexicographically after the node P . These are the possible frequentlexicographic extensions of P . We denote this set by R(P). Thus, we have thefollowing relationship: E(P) � R(P) � E(Q). The value of E(P) in Figure 1,when P = ab is fc; dg. The value of R(P) for P = ab is fc; d; fg, and for P = af ,R(P) is empty.

4 RAMESH AGARWAL, CHARU AGGARWAL, V.V.V. PRASADThe levels in a lexicographic tree correspond to the sizes of the di�erent itemsets.The various levels for the example in Figure 1 are indicated. We shall denote theset of itemsets corresponding to the nodes at level k by Lk.A node is said to be generated, the �rst time its existence is discovered by virtueof the extension of its immediate parent. A node is said to have been examined,when its frequent lexicographic tree extensions have been determined. Thus, theprocess of examination of a node P results in generation of further nodes, unlessthe set E(P) for that node is empty. Obviously a node can be examined only afterit has been generated. This paper will discuss a set of algorithms which constructthe lexicographic tree in a top-down fashion by starting at the node null andsuccessively generating nodes until all nodes have been generated and subsequentlyexamined. At any point in the algorithm, a node in the lexicographic tree is de�nedto be inactive, if it has been determined that the sub-tree rooted at that node cannot be further extended. Otherwise, the node is said to be active. Thus, theevent of a node being active or inactive is dependent on the current state of thealgorithm which is generating the nodes. A node which has just been generatedis usually born active, but it becomes inactive later when all its descendents havebeen determined. For example, in the case of the Figure 1, let us assume that allnodes up to and including level-2 have already been examined. (Consequently, allnodes up to and including level-3 have been generated.) In this case, the set ofactive nodes would be abc, acd, ab, ac, a, and null. Thus, even though there are23 nodes corresponding to the top three levels which have been generated, only 6of them are active. Note that we have not labeled the unexamined nodes abd andacf as active since even the set of candidate branches for these nodes is empty.We will be using this example repeatedly in our paper. For the sake of notationalconvenience, we shall label it A.An active node is said to be a boundary node if it has been generated but notexamined. In example A, the active boundary node set is fabc; acdg. As we cansee from the complete tree in Figure 1, the subsequent examination of the node abcwill not lead to any further extensions, while the examination of the node acd willindeed lead to the node acdf .The extension set E(P) was produced when P was �rst examined. As the al-gorithm progresses, some of these 1-extensions are no longer active. We introducethe term AE(P) to denote the subset of E(P) which is currently active. We callthese active extensions. These represent the branches at node P which are currentlyactive. Next, we introduce the concept of active items.The set of active items F (P) at a node P is recursively de�ned as follows:(1) If the node P is a boundary node, then F (P) = R(P).(2) If the node P is not a boundary node, then F (P) is the union of AE(P) withactive items of all nodes included in AE(P).Clearly, AE(P) � F (P) � E(P). The �rst condition is true because of thenature of the relationship between AE(P) and F (P). F (P) is a set which reducesin size when more itemsets are generated, since fewer number of items form activeextensions. For example A, for the null node, the only active extension is a, andthe set of active items is fa; b; c; d; fg. For node a, its active extensions are fb; cg,and the set of active items is fb; c; d; fg.

TREE PROJECTION ALGORITHM 5In the next section, we will discuss an algorithm which constructs the lexico-graphic tree. The following information is stored at each node during the processof this construction:(1) The itemset P at that node.(2) The set of lexicographic tree extensions at that node which are currentlyactive - AE(P).(3) The set of active items F (P) at that node. F (P) and AE(P) will be updatedwhenever the set of boundary nodes changes.Let P be a node in the lexicographic tree at level-m, and let all levels of thelexicographic tree upto level k > m have already been generated. Then, for atransaction T we de�ne the projected transaction T (P) to be equal to T \ F (P).However, if T does not contain the itemset corresponding to node P then T (P) isnull. If T (P) has less than (k �m + 1) items then also it is eliminated. This isbecause a transaction T (P) at a level-m node with less than (k�m+1) items doesnot have enough items to extend to a node at level-k. The rationale for this is thatany successive projection to lower levels strictly reduces the number of items in theprojected transaction, and hence, if the projected transaction at node P containsless than (k �m+ 1) items, then the same transaction will not contain any item,when projected to a node at level-k. For a set of transactions T , we de�ne theprojected transaction set T (P) to be the set of projected transactions in T withrespect to active items F (P) at P .Consider the transaction abcdefghk. Then, for the example A of Figure 1, theprojected transaction at node null would be fa; b; c; d; e; f; g; h; kg\ fa; b; c; d; fg =abcdf . The projected transaction at node a would be bcdf . For the transactionabdefg, its projection on node ac is null because it does not contain the requireditemset ac.Let P be a level-m node of the lexicographic tree, and let us assume that the topk > m levels have already been generated. We emphasize the following points:(1) An inactive node does not provide any extra information which is useful forfurther processing. Thus, it can be eliminated from the lexicographic tree.(2) For a given transaction T , the information required to count the supportof any itemset which is a descendant of a node P is completely contained in itsprojection T (P).(3) The number of items in a projected transaction T (P) is typically much smallerthan the original transaction. This number continues to reduce as the algorithmprogresses, more frequent itemsets are generated, and F (P) reduces. As F (P)shrinks, and k increases, then at some point, T (P) contains less than (k �m+ 1)items. At that time, T (P) becomes null.(4) For a given transaction set T and node P , the ratio of the number of trans-actions in T (P) and T is approximately determined by the support of the itemsetcorresponding to P . Since projected transactions with less than (k �m+ 1) itemsare not included, the ratio is actually much smaller.2.1. Notational Reference GuideWe will brie
y repeat the terminology introduced in the above section for easein reader reference:

6 RAMESH AGARWAL, CHARU AGGARWAL, V.V.V. PRASADE(P): Frequent lexicographic extensions of node P .R(P): Candidate branches of node P .Lk: Large itemsets (of length k) corresponding to level k.AE(P): Currently active extensions of node P .F (P): Currently active items at node P .T (P): Projection on node P of transaction T .T (P): Projection on node P of transaction set T .3. ALGORITHMIC STRATEGIES FOR LEXICOGRAPHIC TREECREATIONVarious algorithmic strategies are feasible for lexicographic tree creation. Eitherall nodes at level-k may be created before nodes at level-(k+1), or longer patternsmay be discovered earlier in order to remove some of the other branches of the tree.For example, in breadth-�rst search all nodes at level-k will be created before nodesat level-(k+1). On the other hand, in depth-�rst creation, all frequent descendentsof a given node will be determined before any other node. The various strategiesprovide di�erent trade-o�s in I/O, memory, and CPU performance.3.1. Breadth First Creation of the lexicographic treeIn breadth-�rst search, all nodes at level-k are created before nodes at level-(k + 1). At any given level-k, the information regarding the possible items whichcan form frequent lexicographic extensions of it can be obtained from its parent atlevel-(k � 1). A given item i can be a frequent lexicographic extension of a nodeonly if it is also a frequent lexicographic extension of its immediate parent andoccurs lexicographically after it. Thus, while �nding (k+1)-itemsets, we look at allpossible frequent lexicographic extensions of each (k�1)-itemset. For a given nodeat level-(k� 1), if there are m such extensions, then there are �m2 � possible (k+1)-itemsets which are descendants of this (k � 1)-itemset. In order to count these�m2 � possible extensions, we will use projected transaction sets which are stored atthat node. The use of projected transaction sets in counting supports is importantin the reduction of the CPU time for counting frequent itemsets. A
owchartindicating the overall process is illustrated in Figure 2. The algorithmic descriptionis illustrated in Figure 3. The process of creating the matrices at level-(k � 1) ofthe tree and subsequently executing the subroutine AddCounts() is performed inStep 3, the process of addition of new nodes to the lexicographic tree (AddTree())is discussed in Step 4, whereas the process of pruning inactive nodes (PruneTree())from the tree is performed in Step 5.The process of counting the support of the (k + 1)-itemsets is accomplished asfollows: Let P be any (k � 1)-itemset whose frequent extensions E(P) (nodes atlevel-k) have already been determined. At each such node P , a matrix of sizejE(P)j � jE(P)j is maintained. A row and column exists in this matrix for eachitem i 2 E(P). An entry exists in this matrix which indicates the count of itemsetP [fi; jg. (Since the matrix is symmetric, we maintain only the lower triangularpart.) For each item pair fi; jg in the projected transaction T (P), we increment thecorresponding entry of this matrix by one unit. Thus, the total time for counting ateach node is equal to the sum of the squares of the projected transaction sizes at thatnode. Once the process of counting is complete, the frequent (k+1)-itemsets which

TREEPROJECTIONALGORITHM
7

START Generate the null

at level 1

STOP

Check support for
Create triangular matrices

Create new nodes

at level (k+1)

which have sufficient
Step 5 support

at level (k-1) nodes and

node together with all nodes

count support of nodes

at level (k+1).

k=1

Step 1

Step 2

Step 3
Step 4

Step 7

Yes

No

Is

level of the

tree equal

to null?

the kth

all matrix entries.

Prune all inactive nodes

from the tree.

Prune the lists of active

items at all nodes.

k=k+1

Step 6

FIG.2.Flowchartforbreadth-�rstcreationofthelexicographictree

8 RAMESH AGARWAL, CHARU AGGARWAL, V.V.V. PRASADAlgorithm BreadthFirst(minsupport : s, Database : T)beginf Lk denotes the set of all frequent k-itemsets g;L1 = All frequent 1-itemsets;E(null) = set of items in L1;Construct the top level of the lexicographic tree;k = 1;while level-k of the tree is not null dobeginCreate matrices at all level-(k � 1) nodes of the lexicographic tree;for each transaction T 2 T do AddCounts(T);AddTree(k); f Add itemsets to the set of frequent(k + 1)-itemsets Lk+1 and the lexicographic tree gPruneTree(k); f Delete all inactive nodes in the treeup to and including level-(k + 1) gk = k + 1;endend FIG. 3. Breadth First Creation of the Lexicographic Treeare descendants of P may be determined by identifying those entries in the matrixwhich have support larger than the required minimum support s. The process ofgenerating frequent (k + 1)-itemsets from k-itemsets is repeated for increasing kuntil the level-k of the tree is null. Another way of rewording the terminationcriterion is that the active list is empty at the null node. The basic
owchart forperforming the counting is illustrated in Figure 4.The hierarchical structure of the lexicographic tree is useful in creating a set ofprojected transactions for the level-(k � 1) nodes. This is quite important in thereduction of CPU time for itemset counting. The transactions can be projectedrecursively down the tree in order to create all the projected sets up to the level-(k � 1). This projected set is a small subset of the original transaction set foreach node. However, the total space occupied by the projected transactions overall nodes may be much larger than the original database size. Thus, the algorithmreads a transaction from the database into main memory, recursively projects thetransactions down the lexicographic tree in depth �rst order, and updates the ma-trices maintained at level-(k � 1). (In actual implementation, the algorithm readsa block of transactions into a memory bu�er at one time.) The process of per-forming the recursive transaction projection and counting for a single transactionis illustrated in Figure 5. This can also be considered an implementation of Step3 of Figure 4. This
owchart illustrates how to perform the transaction projectionand counting for all descendants of a given node P . The
owchart uses a recursivecall to itself. The �rst call to the
owchart is from the null node. The algorithmicdescription is provided in Figure 6. An example of the matrix along with associatedcounts at the null node is illustrated in the Figure 9. A more detailed description ofthe process will be discussed in the section on transaction projection and counting.We have used the concept of a single transaction for ease in exposition. In reality,it is a block of transactions which is projected at one time. More details will beprovided in the section on memory requirements.Once all the counts of the matrices at level-(k � 1) have been determined, wecompare these counts against the required minimum support, and add the new

TREE PROJECTION ALGORITHM 9

START

Have

No

Yes

Initialize triangular

EXIT

matrices at level

(k-1) nodes

at level (k-1) and add

to the counts of matrices

maintained at those nodes

all transactions
been read yet?

Read the next

transaction

from disk.

Step 1

Step 2

Step 3

Step 4

Project the transaction
to all nodes

FIG. 4. Illustrating the process of performing counting in the lexicographic tree

10 RAMESH AGARWAL, CHARU AGGARWAL, V.V.V. PRASAD
START

Is

Yes

No

Add to the count of
Call the procedure in this

flowchart recursively

Step 1

for each active

Flowchart for recursive projection of transaction T to all descendants of a node P.

extension i of node

done?

the Is
do loop

Yes

No

Project the transaction

this transaction T’(i).

and transaction T’(i).

Step 2
Step 3

Step 4

Step 5

Step 6

T onto extension i

EXIT

node P at level

at node P using the

transaction T.

for extension i of node P

of node P. Let us call (k-1)? P do

the triangular matrix

FIG. 5. An implementation of the AddCounts() procedureAlgorithm AddCounts(T)beginf Add to the counts of the matrices maintained atthe nodes at level-(k � 1) by using a depth �rstprojection of the transaction T gend FIG. 6. Incrementing Itemset Counts

TREE PROJECTION ALGORITHM 11Algorithm AddTree(k)beginLk+1 = All (k + 1)-itemsets which satisfy the minimum support requirement;Add nodes to the tree at level-(k + 1);end FIG. 7. Adding New Itemsets to the TreeAlgorithm PruneTree(k)beginRemove all inactive nodes at level-(k + 1);Set the active item list at each level-(k + 1) node tothe set of candidate branches at that node;for r = k down to 0 dobeginRemove all inactive nodes at level-r;Update active item lists of nodes at level-r to theunion of their active extensions along withactive item lists of their children;end;end FIG. 8. Pruning Inactive Nodes
Null LEVEL 0

LEVEL 1A B C D E F

{A, B, C, D, E, F}

{B, C, D

Matrix counts for the 4 transactions on the right are indicated

 E, F }

{ C, D,

E, F}

{ D,

E, F }
{E, F} {F} {}

ACDF

ABCDEF

BDE

CDEF

AB(1)

AC(2) BC(1)

AD(2) BD(2) CD(3)

AE(1) BE(2) CE(2) DE(3)

AF(2) BF(1) CF(3) DF(3) EF(2)

Transactions:

Matrix for counting supports for the candidate level-2 nodes

This matrix is maintained at the null nodeFIG. 9. The matrix structure at the null node

12 RAMESH AGARWAL, CHARU AGGARWAL, V.V.V. PRASADnodes at level-(k + 1). The new nodes at level-(k + 1) are added by the procedureAddTree() of Figure 7. The algorithm prunes all those nodes which have beendetermined to be unnecessary for further counting and tree generation (Figure 8).The process of pruning inactive nodes proceeds by �rst removing all inactive nodesat level-(k + 1), then all inactive nodes at level-k, and so on, until the null node.At the same time the active item lists for the nodes are updated. Thus, in thenext iteration, when (k + 2) itemsets are being counted, the time for projectingtransactions is greatly reduced. This is because only active items need to be usedin the projection. Another way to look at it is that at any node P , as the algorithmprogresses, the projected transaction set T (P) keeps shrinking both in terms ofthe number of transactions as well as the number of items in transactions. Thisis because the active item list F (P) also shrinks as the algorithm progresses. Iflevel-k of the tree has already been generated, then for a node P at level-m, theprojection of a transaction T (P) must have at least (k �m+ 1) items for it to beuseful to extend the tree to level-(k+1). It it has fewer items, it is eliminated. Fora given value of m, as k increases, fewer transactions satisfy the (k �m+ 1)-itemscriterion. 3.2. Depth First Creation of the lexicographic TreeIn depth-�rst search, we create the nodes of the lexicographic tree in depth-�rstorder. At any point in the search, we maintain the projected transaction sets for allnodes (and their siblings) on the path from the root to the node which is currentlybeing extended. The root of the tree contains the entire transaction database.The key point to understand is that once we have projected all the transactionsat a given node, then �nding the sub-tree rooted at that node is a completelyindependent itemset generation problem with a substantially reduced transactionset. Furthermore, it is possible to prune other branches of the tree quickly. Forexample, in the Figure 1, once the node acdf has been discovered by the depth-�rstsearch procedure, it is possible to prune o� all other sub-trees hanging at c, d, eand f , since none of these generate any itemsets whose existence is not implied byacdf .In breadth-�rst search, it is necessary to initiate the process of transaction projec-tion in each iteration, starting from the null node. Depth-�rst search has the advan-tage that it is not necessary to re-create the projected transactions for each level-k.The problem with this technique is that since the entire transaction database needsto be carried down the tree at one time, disk I/O may be necessary in order to readand write the projected transactions. Thus, although the CPU times are reduced,the disk I/O times may increase so substantially, that the method may often beinfeasible for large databases, except for lower levels of the tree where the projectedtransactions �t in memory. A very e�cient version of the depth �rst algorithm hasbeen proposed in [2] which is capable of �nding very long patterns. This algorithmis more than one order of magnitude faster than the MaxMiner algorithm [6] for�nding long patterns.3.3. Combined Depth First and Breadth First CreationIn this case, we process the �rst few levels of the tree using breadth-�rst search.At some stage of the algorithm, the projected transaction set at individual boundary

TREE PROJECTION ALGORITHM 13level nodes is small enough to �t in memory. At that point, we write all theprojected transactions to disk in separate �les for each boundary node. These�les are read one at a time and the sub-tree rooted at that node is created in thedepth-�rst order. This is done entirely in memory and therefore, does not requireany additional I/O. This process is repeated for all boundary nodes. Thus, theine�ciencies associated with each approach can be avoided by using the correctstrategy for the case in question. Many other hybrid schemes are possible, eachhaving di�erent trade-o�s in terms of I/O, memory, and CPU time.The implementation discussed in this paper uses a pure breadth-�rst strategysince it is geared towards short itemsets in large databases.3.4. Transaction Projection StrategyAs in tree creation, several strategies are possible in projecting transactions toboundary nodes where the eventual counting is done. The most important factorsare available memory and cache size. For simplicity, let us assume that the tree hasbeen created in breadth-�rst order and all nodes up to level-k have been created. Tocreate nodes at level-(k+1), for all nodes P at level-(k� 1) we allocate storage fortriangular matrices of size jE(P)�E(P)j. The collective amount of memory requiredto hold all these matrices is likely to be far larger than cache size of the machine.However, it is expected that they will �t in the amount of available memory. Anyremaining amount of memory is available to hold projected transactions. Onepossible strategy is to process one transaction at a time and project it to all nodesat level-(k � 1). In practice, it will get eliminated at several intermediate nodes ofthe tree, reaching only a small fraction of the nodes at level-(k�1). If the projectedtransaction at a level-(k� 1) node has m items, then it will require �m2 � operationsto update the triangular matrix stored at that node. This is likely to result ina very poor cache performance. However, if a large fraction of the transactiondatabase is projected to that node, then it is quite likely that many transactionswill project to that node. Then, we can set up a loop to count contributionsof all these transactions to the triangular matrix. This results in a much bettercache performance for the triangular matrices. This approach requires a largeramount of memory. When a transaction is simultaneously projected to all nodesat level-(k � 1), the total amount of memory required for all the projections isfar larger. However, this problem can be substantially avoided by following thedepth-�rst strategy in projecting the transactions, even though the tree has beencreated in breadth �rst order. The discussion of this section can be consideredan implementation of Figure 5, using a block of transactions instead of a singletransaction T . The actual implementation of the algorithm, as discussed in theempirical section used a block of transactions at one time. The size of this blockwas determined by the memory availability.3.5. Implementation DetailsThe performance of this algorithm is quite sensitive to the lexicographic orderingof the items in the tree. When the ordering of the items in the tree is such thatthe least frequent item occurs �rst, the running times are best. This has also beenobserved earlier by Bayardo [6]. The reason for this is that the average size of theset E(P) is sensitive to the nature of the ordering. If least frequent items are picked

14 RAMESH AGARWAL, CHARU AGGARWAL, V.V.V. PRASAD
L1

All elements in

a particular strip

are counted together

 since they get blocked

 in cache.

L1FIG. 10. Cache blocking for counting L2�rst, then the size of E(P) is small. This contributes to the reduced running times.In reality, it is possible to improve the performance even further by re-orderingthe items at lower level nodes based on the support counts of the correspondingfrequent extensions. In our paper, we choose to maintain a �xed ordering fromleast to most support after counting 1-itemsets.Our current implementation is primarily based on pure breadth-�rst strategy fortree generation, combined with the depth-�rst strategy for transaction projectionand counting. The counting of the support for frequent (k + 1)-itemsets whichare descendents of a (k � 1)-itemset P was performed in a structured way so thatthe cache performance was optimized. We have discussed earlier that a block oftransactions is used at one time in order to perform the counting. Here we willdiscuss the method for counting L2. The general technique of counting Lk+1 isvery similar. We assume that the database which is used is expressed in terms ofL1 for counting frequent 2-itemsets. This corresponds to the projection at the nullnode. Consider the case when jL1j = 10000. In that case, the number of elements inthe matrix of size jL1j�jL1j is equal to 49995000. The memory required to hold thistriangle is far larger than cache size of a typical machine. Therefore, cache-blockingwas performed.In cache-blocking, the current bu�er of transactions is counted against one stripof elements in the matrix at a time (see Figure 10). Thus, it is more likely for thisentire strip to remain in cache when the counting is performed. Each cache blockrepresents a set of items. (An item is represented by a column in this trapezoidalcache block.) This strip of elements was chosen such that the total number ofelements in it �ts in the cache. The number of cache blocks NC is obtained bydividing the total amount of memory required by the cache size of the machine.We say that a transaction touches a block, if it has at least one item in the cacheblock. If a transaction touches a block, then we maintain pointers which carry theinformation for the �rst and the last item in the transaction from each block, as wellas the last item in the entire transaction. Thus, three pointers are maintained foreach transaction which touches a cache-block. Thus, the transactions are implicitlyprojected to the cache-blocks by storing this pointer information. For a given cacheblock, let there be M transactions which touch it. For this block, we maintain alist of 3 �M pointers for these M transactions. Similar lists are maintained for eachof the blocks. Memory bu�ers are allocated in order to hold the lists of pointers for

TREE PROJECTION ALGORITHM 15each cache block. These pointers may be used to perform the counting e�ectively.Let p1(C; T) and p2(C; T) be the pointers to be �rst and last item respectively atwhich a transaction T touches a cache block C, and p3(C; T) be the pointer to theend of the transaction. Note that the value of p3(C; T) is the same for each cacheblock C. We �rst determine the projections for each transaction in the bu�er ontoeach cache block C:for each transaction T in the bu�er dofor each cache block C touched by transaction T dodetermine and store p1(C; T), p2(C; T), and p3(C; T)The loop for performing the counting using the pointers for the projection of atransaction on a trapezoidal cache block is as follows:for each cache block C dofor each transaction T in the bu�er which touches cache block C dofor OuterPointer=p1(C;T) to p2(C;T) dofor InnerPointer=OuterPointer+1 to p3(C; T) doAdd to the count of the matrix entry corresponding to the items whichare pointed to by OuterPointer and InnerPointerThe code above ensures that the counts for each trapezoidal cache block are doneat one time. Cache blocking is more critical for the higher levels of the tree sincethe matrix sizes are larger at those levels.3.6. Performance e�ect of cachingOne of the aspects of the TreeProjection algorithm is to e�ectively utilize thememory hierarchy in a way which improves the performance of the algorithm sub-stantially. The speed of cache operations has continued to outpace the speed ofmain memory operations in the past few years. Therefore, it is valuable to makee�cient use of caches both for present and future implementations.The use of a lexicographic tree facilitates the use of matrix counting techniquesfor the TreeProjection algorithm. Matrix counting provides the short inner loopstructure which creates the repeated cache accesses to the same memory addresses.The bottleneck operation of the TreeProjection algorithm is in counting. Since thecaching aspect of the algorithm improves this bottleneck operation substantially,it follows that this can lead to an overall performance improvement by an order ofmagnitude.Another caching advantage is obtained by the depth-�rst nature of the projec-tion. This is because in the depth-�rst order, the support of a node and all itsdescendants is counted before counting the support of any other node. When theset of projected transactions at a node �t in the cache, then the depth-�rst order islikely to make repeated cache accesses to this small set of transactions while per-forming the counting for the entire sub-tree rooted at that node. Since most of thetime spent by the algorithm is in counting the support of the candidate extensionsof lower level nodes, it follows that the performance improvement will be re
ectedover a large portion of the counting process.The depth-�rst projection algorithm also works well with multiple levels of cache.The algorithm automatically exploits multiple cache sizes. Typically, in one pass ofthe algorithm, we read a large block of data from disk. This block will not �t evenin a very large cache. However, the block size is designed to �t in main memory.

16 RAMESH AGARWAL, CHARU AGGARWAL, V.V.V. PRASADIt is projected to the null node using the active item list at the null node. Thiswill result in a large reduction in the bu�er size. In the next step, it is projectedto all currently active level-1 nodes. Each of these projections is likely to be anorder of magnitude smaller and may �t in the highest level of cache of the machine(say L3). Next, the block at the leftmost level-1 node is projected to all its activechildren. These projections are likely to be another order of magnitude smallerand may �t in L2. These blocks are again projected in depth �rst order to lowerlevel nodes. At this point, these projections may �t in L1 and and all subsequentprocessing is done with data in L1. Note that the algorithm does not need to knowsizes of various levels of cache. The depth-�rst projection automatically adjusts tovarious levels and sizes of cache. For the higher levels of tree where the transactionbu�er does not �t in cache, cache performance is still good because transactionsare accessed with stride one. To summarize, our tree projection counting algorithmprovides good data locality and exploits multiple levels of cache.3.7. Further OptimizationsA number of optimizations can be performed on this algorithm. For example,when the matrix E(P) � E(P) is counted, it is also possible to count the supportof the itemset P [E(P). If this itemset is discovered to be frequent, then it ispossible to stop exploring the sub-tree rooted at P . This implies that all subsetsof P [E(P) are frequent.Another technique which may be used to speed up the performance is the methodof counting the lower branches of the tree. In this case, we can use bucket countinginstead of matrix counting. Whenever the size of the E(P) is below a certain level,a set of 2jE(P)j � 1 buckets may be used in order to �nd the sub-tree rooted at P .Since there are only 2jE(P)j�1 possible distinct projected transactions at a node, wecan �nd a one-to-one mapping between the buckets and the distinct transactions.The count of a bucket is equal to the number of projected transactions which mapon to it. The bucket counting is a two-phase operation. In the �rst phase, thenumber of transactions corresponding to each bucket are counted. In the secondphase, the counts from various buckets are aggregated together to form counts forall the nodes of the sub-tree rooted at P . In this sub-tree, only those nodes whichmeet the desired support condition are retained. This technique can result in asubstantial reduction in the CPU time and I/O requirements when the number ofprojected transactions at a given node are large, but the size of E(P) is relativelysmall. 3.8. A note on memory requirementsIn this subsection, we will discuss the memory requirements of the TreeProjectionalgorithm. The memory requirement of the TreeProjection is equal to the sum ofthe memory requirements for triangular matrices at each level-(k � 1) node of thelexicographic tree. At �rst sight, this might seem like a rather large requirement.However, this is proportional to the number of candidate (k+1)-itemsets at thatlevel. (Assuming that each entry of the matrix requires 4 bytes, the proportionalityfactor will be 4.) Most other itemset generation algorithms require the explicitgeneration of the candidate itemsets in some form or the other. Thus, the memoryrequirements for maintaining the matrices in the TreeProjection algorithm are quite

TREE PROJECTION ALGORITHM 17comparable to other schemes in the literature. In particular, the lexicographictree requires much less memory than the hash tree implementation of the Apriorialgorithm because of the following two reasons:� Since each node of the hash tree has fewer number of children on the average,it has a larger number of nodes.� Each node of the hash tree needs to contain multiple hash slots, some of whichare usually empty. This is quite wasteful.TABLE 1Memory and CPU time requirements for the matrices at the kthlevel (Retail Data)Level Number of Average No of Matrix CPU TimeMatrices Size Entries (seconds)0 1 5706 16276365 23.491 1668 30 3521972 25.442 4210 5 219269 9.763 305 3 8131 2.564 12 2 115 1.55An example of the memory requirements are illustrated in Table 1. This exampleis for the retail data set (to be introduced in the next section) at a support level of0.1 percent. As we see, the memory requirements of the algorithm rapidly diminishwith increasing level in the tree. Thus, the maximum amount of memory is requiredfor the matrix at level 0, which corresponds to the candidate 2-itemsets. This isgenerally true for data in which the patterns are relatively short.It is true that the number of candidates of size k (for k � 3) scored by Aprioriis less than the TreeProjection algorithm because of certain pruning methods [4]which require that all subsets of a candidate should be frequent. However, ourexperiments on retail data showed that our candidate sets were only slightly largercompared to fully pruned candidates of Apriori. Furthermore, in most of our runs,Apriori usually ran out of memory much earlier than the TreeProjection algorithm.The only other memory requirement is to project a block of transactions to aset of nodes in depth-�rst order. This requirement is
exible, and the block sizecan be adjusted to �t the amount of available memory. In order to project ablock of transactions down the lexicographic tree, we �rst decide the amount ofmemory which needs to be allocated to each level. The memory for a given level isdistributed among the siblings at a given level based on the support counts. Notethat in depth-�rst projection of a block, only one memory bu�er is needed at eachlevel, and typically these bu�ers become smaller as you go down the tree.4. EXTENSIONS TO PARALLEL ASSOCIATION RULE MININGIn this section we provide a brief description of how the algorithm may be par-allelized. We assume that there are m processors, labelled 1 : : :m, The Apriori

18 RAMESH AGARWAL, CHARU AGGARWAL, V.V.V. PRASADalgorithm may be parallelized to two algorithms: namely, the Count DistributionAlgorithm and the Data Distribution Algorithm. The Count Distribution Algorithm[5] scales linearly, and has excellent speedup behavior with respect to the numberof transactions. In this algorithm, the database is equally divided among the Pdi�erent processors. Each processor independantly runs the kth pass of the Apriorialgorithm, and builds the hash tree in its own memory using its own small portionof the database. After each iteration, a global reduction operation is performed inwhich the global counts of candidates are computed by summing these individualcounts across the di�erent processors [10]. Although the algorithm has excellentscaleup properties with the number of processors, it has the disadvantage that eachprocessor needs to hold the entire hash tree in memory. When the hash tree cannot�t in memory, the data distribution algorithm may be used in order to partitionthe hash tree among the di�erent processors. In the Data Distribution Algorithm,[5] the candidate itemsets are partitioned among the di�erent processors, and eachprocessor is reponsible for computing the counts of its locally stored subset of thecandidate itemsets. The performance of the algorithm is sensitive to the distri-bution of the candidate itemsets among the di�erent processors. It is desirable todistributed the candidate itemsets among the di�erent processors in such a way thatthe load is very well balanced. The Intelligent Data Distribution algorithm of Hanet. al. [8] provides some interesting bin packing techniques for performing this loadbalancing operation e�ectively. The parallelization techniques for both the CountDistribution and Data distribution algorithms may be used for the TreeProjectionalgorithm.(1) Count Distributed TreeProjection Algorithm: This algorithm is im-plemented in exactly the same way as the TreeProjection Algorithm. In this case,each processor builds the lexicographic tree in its memory instead of the hash tree.Again, the same global sum reduction operation is performed in order to add thesupport of the candidates across the di�erent processors. The method is linearlyscalable with the number of processors. The only disadvantage with the algorithmis that it is likely to work well when the lexicographic tree �ts in memory of asingle processor. When this is not the case, we need to use a method akin to theIntelligent Data Distributed Algorithm of Han et. al. [8] in order to perform thelexicographic tree generation and counting. This memory constraint is less severefor the parallelized version of the TreeProjection algorithm because of the fact thatthe lexicographic tree requires substantially less memory than the hash tree.(2) Intelligent Data Distributed TreeProjection Algorithm: In this al-gorithm, we distribute the lexicographic tree among the di�erent processors basedon the �rst item in the tree. Thus, each processor has its own set of �rst itemsdenoted by S(i). The lexicographic tree is distributed among the processors in sucha way so that the sum of the supports of the branches assigned to each processoris almost evenly balanced. The techniques for moving the data among the di�erentprocessors for performing the counting are very similar to those discussed in [8].We do not discuss these techniques for lack of space in our paper. A more detaileddiscussion and empirical testing of these parallelization techniques will be providedin future work.

TREE PROJECTION ALGORITHM 19

0

20

40

60

80

100

120

140

160

0.20.40.60.811.21.41.61.82

C
P

U
 ti

m
e

(s
ec

s)

Support in Percent

CPU time vs support for T20.I6.D100K data

Tree Projection Algorithm
APriori

FIG. 11. CPU Time versus support for synthetic data

1

2

3

4

5

6

7

8

9

10

11

100 200 300 400 500 600 700 800 900 1000

R
el

at
iv

e
C

P
U

 ti
m

e

Database size(in ’000s)

Relative CPU time vs database size for T20.I6.D100K data at 0.75% support

FIG. 12. CPU Time versus Database size for synthetic data5. EMPIRICAL RESULTSThe experiments were performed on an IBM RS/6000 43P-140 workstation witha CPU clock rate of 200 MHz, 128 MB of main memory, 1MB of L2 Cache andrunning AIX 4.1. The data resided in the AIX �le system and was stored on a 2GBSCSI drive. We tested the algorithm for both synthetic and real data.The synthetic data set which we used for the purpose of our experiments wasT20.I6.D100K [4]. The corresponding performance curves are illustrated in Figures11 and 12. In Figure 11, we have illustrated the performance of the algorithmversus the support both for the Apriori algorithm [4] and our method (we will callit the TreeProjection algorithm) on the synthetic data set T20.I6.D100K. As we see,the TreeProjection algorithm quickly outstrips the Apriori method when support

20 RAMESH AGARWAL, CHARU AGGARWAL, V.V.V. PRASAD

0

200

400

600

800

1000

1200

0.10.120.140.160.180.20.220.240.260.280.3

C
P

U
 ti

m
e

(s
ec

s)

Support in Percent

CPU time vs support for retail data

Tree Projection Algorithm
APriori

FIG. 13. CPU Time versus support for retail data

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.10.120.140.160.180.20.220.240.260.280.3

C
P

U
 ti

m
e/

ite
m

se
t (

se
cs

)

Support in Percent

CPU time per itemset vs support for retail data

FIG. 14. CPU Time per itemset versus support for retail data

TREE PROJECTION ALGORITHM 21TABLE 2Number of frequent itemsets found for the splice data setSupport in percent No of sets Longest Set6 19112 75.5 26932 75 35047 74.5 45727 74 62258 73.5 93928 73 164584 82.5 309091 82 702065 8

0

50

100

150

200

250

300

350

22.533.544.555.56

C
P

U
 ti

m
e

(s
ec

s)

Support in Percent

CPU time vs support for Splice data

Tree Projection Algorithm
APriori

FIG. 15. CPU Time versus support for splice datavalues are low. For the lowest support value of 0:25 percent, the Apriori algorithmrequired 147:87 seconds, while our technique required only 33.05 seconds. On theother hand, when the support values are high, there was not much of a di�erencebetween the TreeProjection and Apriori algorithms. This is because the times forperforming I/O dominate at the higher levels of support. The scaling with databasesize was linear for both methods.We tested the algorithm on two real data sets. One of them was a retail data setwhich was �rst used in [6] to test the e�ciency of association algorithms. This dataset is not publicly available for proprietary reasons. The retail data set contains213,972 transactions with an average transaction length of 31. The performancegap between the two methods was even more substantial for the case of the retail

22 RAMESH AGARWAL, CHARU AGGARWAL, V.V.V. PRASADdata set. The corresponding performance curves are illustrated in Figures 13 and14. In Figure 13, we have illustrated the performance variation with support.At the lowest support value of 0:1 percent, the TreeProjection algorithm requiredonly 64:28 seconds in comparison with the 1199:44 seconds required by the Apriorialgorithm. This di�erence is more than an order of magnitude. The time requiredfor counting at each level of the tree for a support of 0:1% is illustrated in Table 1.In addition, 1:48 seconds were required for L1 counting. Note that very little CPUtime is spent in counting support at lower levels of the tree. The reason for this isthat our PruneTree(�) method removes a very large fraction of the nodes. An evenmore interesting characteristic of the TreeProjection algorithm was the CPU timerequired per frequent itemset generated. The TreeProjection algorithm improvedin terms of the time required in order to generate each frequent itemset, when thesupport was reduced. It is easy to see why this is the case. As the required supportlevel drops, more nodes are generated at the lower levels of the tree. At these levels,the projected transaction database is very small and therefore much smaller e�ortis required to do the counting per frequent itemset.We also tested the algorithm on the splice dataset. The splice data set was takenfrom the University of California at Irvine (UCI) machine learning repository(http :==www:ics:uci:edu=~mlearn=MLRepository:html) and subsequently cleaned [6].The resulting data set had 3174 records with an average number of items equalto 61. The total number of items in the data was 244. The size of the data set was0.8MB. The Table 2 illustrates the variation of the number of patterns found andlength of the longest pattern with support. Most of the patterns were relativelyshort, and even at very low levels of support (upto 2%) it was found that the lengthof the longest pattern was 8. The corresponding performance chart is illustrated inFigure 15. As we see from Figure 15, the TreeProjection algorithm outperforms theApriori method by more than an order of magnitude. At very low levels of support,the Apriori algorithm runs out of memory and is unable to run to completion. Thisbehavior illustrates the memory advantages of using a lexicographic tree projectionalgorithm over the the hash tree implementation of the Apriori algorithm.6. CONCLUSIONS AND SUMMARYThis paper demonstrated the power of using transaction projection in conjunctionwith lexicographic tree structures in order to generate frequent itemsets requiredfor association rules. The advantage of visualizing itemset generation in terms ofa lexicographic tree is that it provides us with the
exibility of picking the correctstrategy during the tree generation phase as well as transaction projection phase.By combining various strategies, a variety of algorithms are possible to providevery high performance in most situations. The depth-�rst projection techniqueprovides locality of data access, which can exploit multiple levels of cache. We havealso demonstrated the parallelizability of the TreeProjection technique, and theadvantages of its parallel implementation over the parallel implementation of theApriori algorithm. In many situations, the parallel version of the TreeProjectionalgorithm can reduce the communication required by a large factor compared tothe parallel version of the Apriori algorithm. Our future research will explore theparallel aspects of the TreeProjection algorithm in greater detail.

TREE PROJECTION ALGORITHM 23ACKNOWLEDGMENTWe would like to thank Roberto Bayardo and Rakesh Agrawal for providing us with the retailand splice data on which we tested the algorithms. We would also like to thank them for providingus with their latest code for �nding frequent itemsets. We thank Anant Jhingran for his commentson an earlier draft of this paper. REFERENCES1. Agarwal R. C., Aggarwal C. C., Prasad V. V. V., Crestana V., \A Tree Projection Algorithmfor Generation of Large Itemsets For Association Rules." IBM Research Report, RC 21341.2. Agarwal R. C., Aggarwal C. C., Prasad V. V. V., \Depth First Generation of Long Patterns."Proceedings of the ACM SIGKDD Conference, 2000.3. Agrawal R., Imielinski T., Swami A., \Mining association rules between sets of items in verylarge databases." Proceedings of the ACM SIGMOD Conference on Management of data,pages 207-216, 1993.4. Agrawal R., Mannila H., Srikant R., Toivonen H., Verkamo A. I., \Fast Discovery of AssociationRules." Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, Chapter 12,pages 307-328. Proceedings of the 20th International Conference on Very Large Data Bases,pages 478-499, 1994.5. Agrawal R., Shafer J. C., \Parallel Mining of Association Rules." IEEE Transactions onKnowledge and Data Engineering. 8(6), pages 962-969, 1996.6. Bayardo R. J., \E�ciently Mining Long Patterns from Databases." Proceedings of the ACMSIGMOD, pages 85-93, 1998.7. Brin S., Motwani R., Ullman J. D., Tsur S., \Dynamic Itemset Counting and implication rulesfor Market Basket Data." Proceedings of the ACM SIGMOD, pages 255-264, 1997.8. Han E.-H., Karypis G, Kumar V., \Scalable Parallel Data Mining for Association Rules."Proceedings of the ACM SIGMOD Conference. pages 277-288, 1997.9. Han J., Fu Y., \Discovery of Multi-level Association Rules From Large Databases." Proceedingsof the International Conference on Very Large Databases, pages 420-431, Zurich, Switzerland,September 1995.10. Kumar V., Grama A., Gupta A., Karypis G., Introduction to Parallel Computing: AlgorithmDesign and Analysis. Benjamin Cummings/ Addison Wesley, Redword City, 1994.11. Lin D., Kedem Z. M., \Pincer-Search: A New Algorithm for Discovering the Maximum Fre-quent Itemset." EDBT Conference Proceedings, pages 105-119, 1998.12. Mannila H., Toivonen H., Verkamo A. I., \E�cient algorithms for discovering associationrules." AAAI Workshop on Knowledge Discovery in Databases, pages 181-192, 1994.13. Savasere A., Omiecinski E., Navathe S. B., \An e�cient algorithm for mining associationrules in large databases." Proceedings of the 21st International Conference on Very LargeDatabases, 1995.14. Srikant R., Agrawal R., \Mining Generalized Association Rules." Proceedings of the 21st In-ternational Conference on Very Large Data Bases, pages 407-419, 1995.15. Srikant R., Agrawal R., \Mining quantitative association rules in large relational tables".Proceedings of the ACM SIGMOD Conference on Management of Data, pages 1-12, 1996.16. Toivonen H.,\Sampling Large Databases for Association Rules". Proceedings of the 22nd In-ternational Conference on Very Large Databases, Bombay, India, September 1996.17. Zaki M. J., Parthasarathy S., Ogihara M., Li W., \New Algorithms for Fast Discovery ofAssociation Rules." KDD Conference Proceedings, pages 283{286, 1997.

