
Design and Analysis of Algorithms - Chapter 9 1

Greedy algorithmsGreedy algorithms

Optimization problemsOptimization problems solved through a sequence of choices solved through a sequence of choices
that are:that are:
feasiblefeasible

locally optimallocally optimal

irrevocableirrevocable

Not all optimization problems can be approached in this Not all optimization problems can be approached in this
manner!manner!

Design and Analysis of Algorithms - Chapter 9 2

Applications of the Greedy StrategyApplications of the Greedy Strategy

Optimal solutions:Optimal solutions:
•• change makingchange making
•• Minimum Spanning Tree (MST)Minimum Spanning Tree (MST)
•• SingleSingle--source shortest paths source shortest paths
•• simple scheduling problemssimple scheduling problems
•• Huffman codesHuffman codes

Approximations:Approximations:
•• Traveling Salesman Problem (TSP)Traveling Salesman Problem (TSP)
•• Knapsack problemKnapsack problem
•• other combinatorial optimization problemsother combinatorial optimization problems

Design and Analysis of Algorithms - Chapter 9 3

Minimum Spanning Tree (MST)Minimum Spanning Tree (MST)

Spanning treeSpanning tree of a connected graph of a connected graph GG: a connected acyclic : a connected acyclic
subgraphsubgraph of of G G that includes all of that includes all of GG’s vertices.’s vertices.

Minimum Spanning TreeMinimum Spanning Tree of a weighted, connected graph of a weighted, connected graph GG: :
a spanning tree of a spanning tree of GG of minimum total weight.of minimum total weight.

Example:Example: 3

42

1
4

2
6

1

3

Design and Analysis of Algorithms - Chapter 9 4

Prim’sPrim’s MST algorithmMST algorithm

Start with tree consisting of one vertexStart with tree consisting of one vertex

“grow” tree one vertex/edge at a time to produce MST“grow” tree one vertex/edge at a time to produce MST
•• Construct a series of expanding Construct a series of expanding subtreessubtrees TT11, T, T22, …, …

at each stage at each stage construct Tconstruct Ti+1i+1 from Tfrom Tii: add minimum weight : add minimum weight
edge connecting a vertex in tree (edge connecting a vertex in tree (TTii) to one not yet in tree) to one not yet in tree
•• choose from “fringe” edges choose from “fringe” edges
•• (this is the “greedy” step!)(this is the “greedy” step!)

algorithm stops when all vertices are includedalgorithm stops when all vertices are included

Design and Analysis of Algorithms - Chapter 9 5

Examples:Examples:

3

42

1
4

2
6

1

3

a

edc

b
1

5

24 6

3 7

Design and Analysis of Algorithms - Chapter 9 6

Notes about Notes about Prim’sPrim’s algorithmalgorithm

Need to prove that this construction actually yields MST Need to prove that this construction actually yields MST

Need priority queue for locating lowest cost fringe edge: use Need priority queue for locating lowest cost fringe edge: use
minmin--heapheap

Efficiency:Efficiency: For graph with For graph with n n vertices and vertices and mm edges:edges:
((nn –– 1 + 1 + mm) log) log nn

ΘΘ((mm log log n)n)

number of stages
(min-heap deletions)

number of edges considered
(min-heap insertions)

insertion/deletion from min-heap

Design and Analysis of Algorithms - Chapter 9 7

Another Greedy algorithm for MST: Another Greedy algorithm for MST: KruskalKruskal

Start with empty forest of treesStart with empty forest of trees
“grow” MST one edge at a time“grow” MST one edge at a time
•• intermediate stages usually have forest of trees (not connected)intermediate stages usually have forest of trees (not connected)

at each stage add minimum weight edge among those not at each stage add minimum weight edge among those not
yet used that does not create a cycle yet used that does not create a cycle
•• edges are initially sorted by increasing weightedges are initially sorted by increasing weight
•• at each stage the edge may:at each stage the edge may:

–– expand an existing treeexpand an existing tree
–– combine two existing trees into a single treecombine two existing trees into a single tree
–– create a new treecreate a new tree

•• need efficient way of detecting/avoiding cyclesneed efficient way of detecting/avoiding cycles

algorithm stops when all vertices are includedalgorithm stops when all vertices are included

Design and Analysis of Algorithms - Chapter 9 8

Examples:Examples:

3

42

1
4

2
6

1

3

a

edc

b
1

5

24 6

3 7

Design and Analysis of Algorithms - Chapter 9 9

Notes about Notes about Kruskal’sKruskal’s algorithmalgorithm

Algorithm looks easier than Algorithm looks easier than Prim’sPrim’s but is but is
•• harder to implement (checking for cycles!)harder to implement (checking for cycles!)
•• less efficient less efficient ΘΘ((mm log log mm))

Cycle checking:Cycle checking: a cycle exists a cycle exists iffiff edge connects vertices in edge connects vertices in
the same component. the same component.

UnionUnion--find find algorithms algorithms –– see section 9.2see section 9.2

Design and Analysis of Algorithms - Chapter 9 10

Shortest pathsShortest paths--Dijkstra’sDijkstra’s algorithmalgorithm

Single Source Single Source ShotestShotest Paths Problem:Paths Problem: Given a weighted graph G, find Given a weighted graph G, find
the shortest paths from a source vertex s to each of the other vthe shortest paths from a source vertex s to each of the other vertices.ertices.

Dijkstra’sDijkstra’s algorithm: Similar to algorithm: Similar to Prim’sPrim’s MST algorithm, with the MST algorithm, with the
following difference:following difference:
•• Start with tree consisting of one vertexStart with tree consisting of one vertex

•• “grow” tree one vertex/edge at a time to produce MST“grow” tree one vertex/edge at a time to produce MST
–– Construct a series of expanding Construct a series of expanding subtreessubtrees TT11, T, T22, …, …

•• Keep track of shortest path from source to each of the vertices Keep track of shortest path from source to each of the vertices in in TTii

•• at each stage at each stage construct Tconstruct Ti+1i+1 from Tfrom Tii: add minimum weight edge connecting : add minimum weight edge connecting
a vertex in tree (a vertex in tree (TTii) to one not yet in tree) to one not yet in tree
–– choose from “fringe” edges choose from “fringe” edges
–– (this is the “greedy” step!)(this is the “greedy” step!)

•• algorithm stops when all vertices are includedalgorithm stops when all vertices are included

edge (edge (v,wv,w) with lowest) with lowest dd((s,vs,v) +) + dd((v,wv,w))

Design and Analysis of Algorithms - Chapter 9 11

Example:Example:

a

edc

b
1

5

24 6

3 7

Design and Analysis of Algorithms - Chapter 9 12

Notes on Notes on Dijkstra’sDijkstra’s algorithmalgorithm

Doesn’t work with negative weightsDoesn’t work with negative weights

Applicable to both undirected and directed graphsApplicable to both undirected and directed graphs

Efficiency:Efficiency:

