Greedy algorithms

Optimization problems solved through a sequence of choices that are:

S feasible

& locally optimal

S irrevocable

Not all optimization problems can be approached in this manner!

Applications of the Greedy Strategy

& Optimal solutions:

- change making
- Minimum Spanning Tree (MST)
- Single-source shortest paths
- simple scheduling problems
- Huffman codes

& Approximations:

- Traveling Salesman Problem (TSP)
- Knapsack problem
- other combinatorial optimization problems

Minimum Spanning Tree (MST)

& <u>Spanning tree</u> of a connected graph G: a connected acyclic subgraph of G that includes all of G's vertices.

- **Q** <u>Minimum Spanning Tree</u> of a weighted, connected graph G: a spanning tree of G of minimum total weight.
- 8 Example:

Design and Analysis of Algorithms - Chapter 9

Prim's MST algorithm

& Start with tree consisting of one vertex

- **&** "grow" tree one vertex/edge at a time to produce MST
 - Construct a series of expanding subtrees T₁, T₂, ...
- **Q** at each stage construct T_{i+1} from T_i : add minimum weight edge connecting a vertex in tree (T_i) to one not yet in tree
 - choose from "fringe" edges
 - (this is the "greedy" step!)

algorithm stops when all vertices are included

Notes about Prim's algorithm

Q Need to prove that this construction actually yields MST

𝔄 Need priority queue for locating lowest cost fringe edge: use min-heap

a Efficiency: For graph with *n* vertices and *m* edges: $(n-1+m) \log n$ insertion/deletion from min-heap

number of stages (min-heap deletions)

number of edges considered (min-heap insertions)

 $\Theta(m \log n)$

Design and Analysis of Algorithms - Chapter 9

Another Greedy algorithm for MST: Kruskal

- **Q** Start with empty forest of trees
- & "grow" MST one edge at a time
 - intermediate stages usually have forest of trees (not connected)
- - edges are initially sorted by increasing weight
 - at each stage the edge may:
 - expand an existing tree
 - combine two existing trees into a single tree
 - create a new tree
 - need efficient way of detecting/avoiding cycles

& algorithm stops when all vertices are included

Notes about Kruskal's algorithm

& Algorithm looks easier than Prim's but is

- harder to implement (checking for cycles!)
- less efficient $\Theta(m \log m)$

& *Cycle checking:* a cycle exists iff edge connects vertices in the same component.

& Union-find algorithms – see section 9.2

Shortest paths-Dijkstra's algorithm

- **Q** <u>Single Source Shotest Paths Problem:</u> Given a weighted graph G, find the shortest paths from a source vertex s to each of the other vertices.
- **Q** Dijkstra's algorithm: Similar to Prim's MST algorithm, with the following difference:
 - Start with tree consisting of one vertex
 - "grow" tree one vertex/edge at a time to produce MST
 - Construct a series of expanding subtrees T₁, T₂, ...
 - Keep track of shortest path from source to each of the vertices in T_1
 - at each stage construct T_{i+1} from T_i: add minimum weight edge connecting a vertex in tree (T_i) to one not yet in tree
 - choose from "fringe" edges
 - (this is the "greedy" step!)

edge (v,w) with lowest d(s,v) + d(v,w)

• algorithm stops when all vertices are included

Design and Analysis of Algorithms - Chapter 9

Notes on Dijkstra's algorithm

Q Doesn't work with negative weights

& Applicable to both undirected and directed graphs

& Efficiency: