i

i

14

r Igorithm
Greefyalgo 5 e

Optimization problems solved through a sequence of choices
that are:

feasible

locally optimal
irrevocable

Not all' optimization problems can be approached in this
manner:!

Design and Analysis of Algorithms - Chapter 9 1

Applications of the Greedy Strategy Y

vrm
Optimal solutions:

change making

Minimum Spanning Tree (MST)

Single-source shortest paths

simple scheduling problems

Huffman codes

Approximations:
Traveling Salesman Problem (TSP)
Knapsack problem
other combinatorial optimization problems

i

i

14

Design and Analysis of Algorithms - Chapter 9 2

Minimum Spanning Tree (MST] Y

L S
Spanning tree of a connected graph G: a connected acyclic
subgraph of G that includes all of G’s vertices.

Minimuny Spanning Tree of a weighted, connected graph G
a spanning tree of G'of minimum total weight.

Example: - —

111

i

Design and Analysis of Algorithms - Chapter 9 3

i

i

14

Prim's MST algorithm T

Start with tree consisting of one vertex

“srow” tree one vertex/edge at a time to produce MST

Construct a series of expanding subtrees T,, T,, ...

at each stage construct T, , from T,: add minimum weight
edge connecting a vertex in tree (T,) to one not yet in tree
choose from *“fringe” edges
(this'is the “greedy’ step!)

algorithm stops when all vertices are included

Design and Analysis of Algorithms - Chapter 9 4

i

i

111

/\

Design and Analysis of Algorithms - Chapter 9

Notes ahout Prim's algorithm T,

Need to prove that this construction actually yields MST

Need priority queue for locating lowest cost fringe edge: use
min-heap

Efficiency: FEor graph with » vertices and m edges:

(n—1 + m) log n
- \ T insertion/deletion from min-heap

number of staggs number of edges considered
(min-heap deletions) (min-heap insertions)

O(m log n)

i

i1

Design and Analysis of Algorithms - Chapter 9 6

i

i

i

14

AnotherGreedy algorithm for MST: Kruskal I

L S
Start with empty forest of trees

“srow” MIST one edge at a time

intermediate stages usually have forest of trees (not connected)

at each stage add minimum weight edge among those not
yet used that does not create a cycle
edges are initially sorted by increasing weight

at each stage the edge may:
expand an existing tree
combine two existing trees into a single tree

create a new tree

need efficient way of detecting/avoiding cycles

algorithm stops when all vertices are included

Design and Analysis of Algorithms - Chapter 9 7

i

i

111

/\

Design and Analysis of Algorithms - Chapter 9

i

i

14

Notes ahout Kruskal's algorithm T,

Algorithm looks easier than Prim’s but is
harder to implement (checking for cycles!)
less efficient O(m log m)

Cycle checking: a cycle exists iff edge connects vertices in
the same component.

Union-find algorithms — see section 9.2

Design and Analysis of Algorithms - Chapter 9 9

i

i

114

shortest paths-Dikstra's algorithim
1t
Single Source Shotest Paths Problem: Given a weighted graph G, find
the shortest paths from a source vertex s to each of the other vertices.

Dijkstra’s algorithm: Similar to Prim’s MST algorithm, with the
following difference:

Start with tree consisting of one vertex

“srow’’ tree one vertex/edge at a time to produce MST
Construct a series of expanding subtrees T, T,, ...

at each stage construct T, from T.: add uuumui weigne cuge connecting
a vertex In tree (T,) to one not yet in tree

choose from *“ifringe” edges \
(ChiSasIhesgrecdy S siept) edge (v,w) with lowest d(s,v) + d(v,w)

algorithm stops when all vertices are included

Design and Analysis of Algorithms - Chapter 9 10

i

i

111

Design and Analysis of Algorithms - Chapter 9

11

i

i

14

Notes on Dykstra's algorithm

Doesn’t work with negative weights
Applicable to both undirected and directed graphs

Efficiency:

Design and Analysis of Algorithms - Chapter 9

I'rf

12

