
FUNCTIONAL DEPENDENCY

R(A1, A2, ..., An) : a relation SCHEMA

X⊆R, and Y ⊆R: attributes in R

r(R): a specific relation of type R

• R satisfies the functional dependency (fd) X → Y

if each specific relation (relational VALUE) r(R) satisfies X
→ Y.

• A relation value r satisfies X → Y

if each X-value in r is associated with a unique Y-value in r.

In other words, a relation value r satisfies X → Y if

for any two tuples t1 and t2 in r,

t1[X] = t2[X] ⇒ t1[Y] = t2[Y].

Consider the relation schema SP′(S#, P#, QTY, STATUS).
Relation value r(SP′) for the relation schema SP′

S# P# QTY STATUS
s1 p1 100 30
s1 p2 200 30
s2 p1 100 50
s2 p3 100 50

Which functional dependencies are satisfied by this relation
value?

-2-

• Full functional dependency VS. partial functional depen-
dency

Attribute Y is fully functionally dependent on attribute X,
if X → Y, but we do NOT hav e X′ → Y for any proper sub-
set X′ of X.

Consider relation R(MOTHER, CHILD, GIFT, DATE),
with functional dependencies

F = {CHILD → MOTHER, (CHILD, DATE) → GIFT}.

is the attribute MOTHER fully functionally dependent on
(CHILD, DATE)?

The answer is: NO.
Because CHILD → MOTHER, and thus MOTHER is depen-
dent on a proper subset of (CHILD, DATE).

Attribute MOTHER is partially dependent on (CHILD,
DATE).

Consider the following sample data (relation value) for the
relation R:

MOTHER CHILD GIFT DATE
Linda Jim Bike 1-20-2009
Linda Jim Sweater 12-25-2008
Linda Jim CD 3-8-2007
Linda Mary Game 12-25-2008
Linda Mary Book 2-20-2006
Susan David CD 7-20-2009
Susan David Shoes 8-30-2009

Do you see any problems (redundancy, etc.) from the above
sample data?

-3-

EXAMPLE OF FUNCTIONAL DEPENDENCY

The two most important things to remember about functional
dependency (fd) are:

(1) Fd’s are determined by the meaning of the attributes and
their role in the "real world" which is being modeled by the
database.

(2) Fd’s are in turn used to group the attributes together to form
the normalized relations of the database.

Example. Consider the attributes

C Class (of a course)
T Time for the class
R Room for the class
I Instructor of the class

which describe the arrangement of room and time for classes
taught by the instructors. These attributes are used to model part
of the "real world". We hav e certain constraints about the objects
in the "real world"s:

(1) No two instructors teach the same course.

(2) At any time and in a given room, there is at most one
class being taught there.

(3) No class can be taught at one given time in two rooms.

(4) No instructor can teach two classes at one given time.

-4-

The functional dependencies are:

(a) C → I
(b) TR → C
(c) CT → R
(d) IT → C

Given below is a database which has some tuples violating the
above functional dependencies.

Class Instructor Time Room
Csc4402 Chen 1:30/M 101
His7700 Brown 3:00/T 205

Csc4402 Smith 2:00/F 310 (a)
Art2450 John 3:00/T 205 (b)
His7700 Brown 3:00/T 208 (c)
Csc7420 Chen 1:30/M 202 (d)

It is easy to see that the tuples marked (a), (b), (c), (d) violate the
functional dependencies (a), (b), (c), (d) respectively.

-5-

AXIOMS FOR FUNCTIONAL DEPENDENCIES

Logical implications of dependencies. Let R(ABC) be a
relation schema and F = {A → B, B → C} be the set of functional
dependencies that hold on R. It is easy to see that the fd A → C
also holds in R.

In general, let F be a set of functional dependencies and let
X → Y be a functional dependency. We say F logically implies X
→ Y, written F |= X → Y, if every relation instance r that satisfies
F also satisfies X → Y.

The closure of F

The closure of F, denoted as F+, is defined as the set of all
the functional dependencies that are logically implied by F. That
is, F+ ={X → Y | F |= X → Y}.

-6-

ARMSTRONG’S RULES

In the example relation R(ABC) given earlier, we noticed
that from the following functional dependencies {A → B , B →
C}, we can deduce A → C by transitivity, and deduce AB → C by
a simple application of the definition of functional dependency. In
fact, using the following Armstrong’s rules, we can deduce AB →
C from either A → C or B → C.

Armstrong’s rules:

(1) X → X′ for all subsets X′ ⊆ X (projection rule)
(2) if X → Y then XZ → YZ (augmentation rule)
(3) if X → Y and Y → Z then X → Z (transitive rule)

We can also derive many other rules by repeated application
of the rules (1) - (3). For example, we can obtain the union rule:

if X → Y and X → Z then X → YZ.

Also, we can derive the decomposition rule:

if X → YZ then X → Y and X → Z.

The importance of the Armstrong’s rules lies in that they
allow manipulation of the fd’s purely in a syntactic way (at the
schema level) without looking at the tuples of a relation (at the
relation instance level).

-7-

DETERMINING DEPENDENT ATTRIBUTES

Let X be a set of attributes and F be a set of functional dependen-
cies. Let X+ be the set of all attributes that depend on a subset of
X with respect to F, i.e., X+ is the set of attributes Z, such that X →
Z ∈ F+. X+ is called the closure of X (w.r.t. F). By definition, X
⊆ X+.

The algorithm for computing X+ (w.r.t. F):

Input: A relation schema R, a set of functional dependencies F and
a set of attributes X.
Output: X+.

(1) X+ ← X.
(2) Repeat

found ← false;
for (each fd Y → Z ∈ F) do
if (Y ⊆ X+)
then begin

found ← true;
X+ ← X+ ∪ Z;
remove Y → Z from further consideration;
end;

until (found = false) or (X+ = all attributes).

-8-

Example. The computation of (AC)+ = ABCDE w.r.t. F = {AB →
E, AD → B, B → C, C → D} is shown below.

Value of (AC)+ after each iteration of repeat-loop
#1 #2 #3

Fd’s

AB → E − − ABCDE
(Y = AB)

AD → B − ABCD *
(Y = AD)

B → C − ABCD *
(Y = B)

C → D ACD *
(Y = C)
found true true true

"*" indicates that the fd will not be considered further

Note that the order in which the fd’s are used affects the details of
the progress of computation, but not the final X+.

-9-

Example. If F = {AB → C, C → B, C → A}, then we can
use the following functional dependencies as a shorthand to repre-
sent the F+: (The right hand side of each fd is simply the X+ where
X = the left hand side; the X’s are all the non-empty subsets of the
attributes (ABC)).

A → A
B → B
C → ABC
AB → ABC
AC → ABC
BC → ABC
ABC → ABC

-10-

EQUIVALENCE AND REDUNDANCY OF FD’S

Tw o sets of fd’s F1 and F2 are said to be equivalent, F1 ≡ F2, if
they hav e the same closure:

F+
1 = F+

2 ,

or equivalently,

F1 ⊆ F+
2 and F2 ⊆ F+

1 .

Note that to test F1 ⊆ F+
2 , we need not compute all of F+

2 . We
need only to verify that for each X → Y ∈ F1, we hav e X → Y ∈
F+

2 , i.e., the closure X+ computed using F2 contains Y.

Example. Let F1 = {A → B, B → C, C → A} and F2 = {A
→ C, C → B, B → A}. Then F1 ≡ F2.

This is true because A+ using F2 equals ABC which contains B.
Thus A → B ∈ F+

2 . Similarly, B → C and C → A are in F+
2 , etc.

Redundant fd. An fd f ∈ F is redundant if F ≡ F − {f}.

Theorem. F1 ≡ F2 if and only if for each subset of
attributes X, X+

1 = X+
2 , where X+

i is the closure of X computed
using the fd’s in Fi .

Theorem. An fd X → Y in F is redundant if and only if Y ⊆
X+, where X+ is computed without using the fd X → Y.

A set of fd’s is said to be reduced if it contains no redundant fd’s.

Example. The set F = {A → B, B → C, C → A, A → C, C
→ B, B → A} can be reduced in two ways by successively

-11-

removing the redundant fd’s.

1. {A → B, B → C, C → A}

2. {A → C, C → B, B → A}

Note that removing a redundant fd from a set F does not affect the
closure F+. There are some other ways to reduce the set F, you
may try to find them.

-12-

MINIMAL COVERS

Let F1 and F2 be two sets of functional dependencies. If F1
≡ F2, then we say the F1 is a cover of F2 and F2 is a cover of F1.
We also say that F1 covers F2 and vice versa. It is easy to show
that every set of functional dependencies F is covered by a set of
functional dependencies G, in which the right hand side of each fd
has only one attribute.

We say a set of dependencies F is minimal if:

(1) Every right hand side of each fd in F is a single attribute.

(2) The left hand side of each fd does not have any redundant
attribute, i.e., for every fd X → A in F where X is a compos-
ite attribute, and for any proper subset Z of X, the functional
dependency Z → A ∉ F+.

(3) F is reduced (without redundant fd’s). This means that for
ev ery X → A in F, the set F − {X → A} is NOT equivalent
to F.

Minimal Covers of F. It is easy to see that for each set F of
functional dependencies, there exists a set of functional dependen-
cies F′ such that F ≡ F′ and F′ is minimal. We call such F′ a mini-
mal cover of F.

-13-

The algorithm to compute F′, a minimal cover of F.

Input: F, a set of fd’s.
output: F′, a minimal cover of F.

(1) Let F′ = {X → A | X → A ∈ F and A is a single attribute}.
For each fd X → A1 A2 ... An ∈ F (n > 1), put the fd’s X →
A1, X → A2, ..., X → An into F′, where Ai is a single
attribute.

(2) While
there is an fd X → A ∈ F′ such that X is a composite
attribute and Z ⊂ X is a proper subset of X and Z → A
∈ (F ′)+,

do
replace X → A with Z → A.

(3) For each fd X → A ∈ F′, check if it is redundant, if it is,
eliminate it. ♣

It is important to note that for the above algorithm, the order-
ing between step (2) and step (3) is critical: If you first perform
step (3) and then perform step (2) of the algorithm, the resulting set
of fd’s may still have redundant functional dependencies.

It should be pointed out that for a set of functional depen-
dencies F, there may be more than one minimal covers of F.

-14-

Example. (Computing a minimal cover.)
Let R = R(ABCDEGH) and F = {CD → AB, C → D, D → EH,
AE → C, A → C, B → D}. The process of computing a minimal
cover of F is as follows:

(1) Break down the right hand side of each fd’s. After per-
forming step (1) in the algorithm, we get F′ = {CD → A, CD
→ B, C → D, D → E, D → H, AE → C, A → C, B → D}.

(2) Eliminate redundancy in the left hand side. The fd CD →
A is replaced by C → A. This is because C → D ∈ (F ′)+,
hence C → CD ∈ (F ′)+; from C → CD ∈ (F ′)+ and CD →
A ∈ F′, by transitivity, we hav e C → A ∈ (F ′)+ and hence
CD → A should be replaced by C → A. Similarly, CD → B
is replaced by C → B, AE → C is replaced by A → C. F′ =
{C → A, C → B, C → D, D → E, D → H, A → C, B → D}
after step (2).

(3) Remove redundant fd’s. The fd C → D is eliminated
because it can be derived from C → B and B → D and hence
it is redundant. The F′ now becomes {C → A, C → B, D →
E, D → H, A → C, B → D}, which is the only minimal
cover of F. ♣

-15-

CANDIDATE KEYS

A candidate key of a relation schema R is a subset X of the
attributes of R with the following two properties:

1. Every attribute is functionally dependent on X,
i.e., X+ = all attributes of R (also denoted as X+ = R).

2. No proper subset of X has the property (1),
i.e., X is minimal with respect to the property (1).

A sub-key of R: a subset of a candidate key;

a super-key: a set of attributes containing a candidate key.

We also use the abbreviation CK to denote "candidate key".

Let R(ABCDE) be a relation schema and consider the fol-
lowing functional dependencies F = {AB → E, AD → B, B → C,
C → D}. Since

(AC)+ =ABCDE,
A+ = A, and
C+ = CD,

we know that AC is a candidate key, both A and C are sub-keys,
and ABC is a super-key. The only other candidate keys are AB
and AD. Note that since nothing determines A, A is in every can-
didate key.

