
Algorithm Closest_pair(PX, n)

//Input: An array PX[0 .. n-1] of points, and parameter n, size of the array. Each cell PX[i] has 3 components:
PX[i] = { PX[i].ID, PX[i].x, PX[i].y }: the ID, x and y coordinate of point PX[i]
The points in PX are sorted (ascending order) according to the x coordinate

//Output: min_dist: minimum distant between two points in PX
PY[0 .. n-1]: Points in PX now sorted (ascending order) according to the y coordinate

//check the base case

If n = 1 return (INF, PX)

If n = 2

min_dist ← dist(PX[0], PX[1])
If PX[0].y ≤ PX[1].y

PY[0] ← PX[0]
PY[1] ← PY[1]

Else PY[0] ← PX[1]
PY[1] ← PX[0]

Return (min_dist, PY)

//Divide into two subproblems

mid ← n/2
PXL ← PX[0..mid-1]
PXR ← PX[mid .. n-1]

// Conquer the subproblems

(dL, PYL) ← Closest_pair(PXL, mid) // the left half of the points
// PYL is the array of points in PXL sorted by y coordinate

(dR, PYR) ← Closest_pair(PXR, n-mid) // the right half of the points
// PYR is the array of points in PXR sorted by y coordinate

//Combine the solutions for the subproblems

d ← min (dL, dR) // d is the current minimum distance

PY ← merge (PYL, PYR) // PY is the array of points in PX sorted by the y coordinate



-2-

// The merge method is essentially the same as in merge sort

mid_x ← PX[mid].x // the x value of the split point

length ← 0
i ← 0

While (i ≤ n-1) Do

If | PY[i].x - mid_x | ≤ d

Strip[length] ← PY[i] // point PY[i] is within the strip of width 2d centered around
// the line x = mid_x

length ← length + 1

i ← i+1

// Now the array Strip contains all points in PY which are within
// the strip of width 2d centered around the line x = mid_x

//The number of elements in Strip is length
min_dist ← d

//Next we will check the points in Strip for possible smaller
// distance than min_dist

For i ← 0 to length-2 Do

k ← i+1 // Only check points in Strip with index larger than i

While (k ≤ length-1 AND Strip[k].y - Strip[i].y ≤ d) Do

new_d ← dist(Strip[i], Strip[k])
min_dist ← min(d, new_d) // update the current min_dist

Return (min_dist, PY)


