Chapter 9

Greedy Technique
introdution to The Design \&

Greedy Technique

Constructs a solution to an optimization problem piece by piece through a sequence of choices that are:
feasible

- locally optimal
irrevocable

For some problems, yields an optimal solution for every instance,
For most, does not but can be useful for fast approximations.

Applications of the Greedy Strategy

Optimal solutionss

- change making for "normal" coin denominations
- minimum spanning tree (MST)
- single-source shortest paths
- simple scheduling problems
- Huffiman codes

Approximations:

- traveling salesman problem (ISP)
- knapsack problem
- other combinatorial optimization problems

Change-Mlaking Problem

Given unlimited amounts of coins of denominations $d_{1}>\ldots>d_{m}$, give change for amount n with the least number of coins

Example: $d_{1}=25 \mathrm{c}, d_{2}=10 \mathrm{c}, d_{3}=5 \mathrm{c}, d_{4}=1 \mathrm{c}$ and $n=48 \mathrm{c}$

Greedy solution:

Greedy solution is
optimal for any amount and "normal"s set of denominations

- may not be optimal for arbitrary coin denominations

Mimimum Spanning Tree (MISI)

Spanning tree of a connected graph G : a connected acyclic subgraph of G that includes all of G^{9} s vertices

Minimum spanning tree of a weighted, connected graph $G:$ a spanning tree of G of minimum total weight

Example:

Prim's MIST' algorithm

- Start with tree T_{1} consisting of one (any) vertex and "grow" tree one vertex at a time to produce MST through a series of expanding subtirees $\mathrm{T}_{1}, \mathrm{~T}_{25}, \ldots, \mathrm{~T}_{n}$

On each iteration, construct T_{i+1} from T_{i} by adding vertex not in T_{i} that is closest to those already in T_{i} (this is a "greedy" step!)

Stop when all vertices are included

Example

Notes about Prim's algorithm

Proof by induction that this construction actually yields MST
. Needs priority queue for locating closest fringe vertex

Efficiency

- $O\left(n^{2}\right)$ for weight matrix representation of graph and array implementation of priority queue
- $\mathrm{O}(m \log n)$ for adjacency list representation of graph with n vertices and m edges and min-heap implementation of priority queue

Another greedy algorithm for MIST: Kruskal's

Sort the edges in nondecreasing order of lengths
"Grow" tree one edge at a time to produce MST through a series of expanding forests $F_{1}, F_{2 p}, \ldots, F_{n-1}$

On each iteration, add the next edge on the sorted list unless this would greate a cycle. (If it would, skip the edge.)

Example

Notes about Kruskal's algorithm

- Algorithm looks casier than Prim's but is harder to implement (checking for cycles!)
- Cycle checking: a cycle is created iff added edge connects vertices in the same connected component

Union-find algorithms - see section 9.2

Minimum spanning tree vs, Steiner tree

Shortest paths - Dijkstra's algorithm

Single Source Shortest Paths Problem: Given a weighted connected graph G , find shortest paths from source vertex s to each of the other vertices

Dïlsstru's algorithm: Similar to Prim's MST' algorithm, with a different way of computing numerical labels: Among vertices not already in the tree, it finds vertex u with the smallest sum

$$
d_{v}+w(\nu, u)
$$

where
v is a vertex for which shortest path has been already found on preceding iterations (such vertices form a tree)
d_{v} is the length of the shortest path form source to v
$w(v, u)$ is the length (weight) of edge from v to u

Remaining vertices

$a(-, 0)$	$\underline{b(a, 3)} \mathrm{c}(-, \infty) \mathrm{d}(\mathrm{a}, 7) \mathrm{e}(-, \infty)$
$\mathrm{b}(\mathrm{a}, 3)$	$\mathrm{c}(\mathrm{b}, 3+4)$
$\mathrm{d}(\mathrm{b}, 3+2)$	$\mathrm{e}(-, \infty)$
$\mathrm{d}(\mathrm{b}, 5)$	$\underline{\mathrm{c}(\mathrm{b}, 7)} \mathrm{e}(\mathrm{d}, 5+4)$
$\mathrm{c}(\mathrm{b}, 7)$	$\underline{e(\mathrm{~d}, 9)}$

$\mathrm{b}(\mathrm{a}, 3) \quad \mathrm{c}(\mathrm{b}, 3+4) \underline{\mathrm{d}(\mathrm{b}, 3+2)} \mathrm{e}(-, \infty)$

$\mathrm{c}(\mathrm{b}, 7)$
$\mathrm{e}(\mathrm{d}, 9)$

Notes on Dijkstra's algorithm

Doesn't work for graphs with negative weights

Applicable to both undirected and directed graphs

Efficiency

- $O\left(\mid V^{2}\right)$ for graphs represented by weight matrix and array implementation of priority queue
- $O(\mid$ EE $|\log | V \mid)$ for graphs represented by adj. lists and minheap implementation of priority queue

Don't mix up Dijkstra's algorithm with Prim's algorithm!

Coding Problem

Coding: assignment of bit strings to alphabet characters

Codewords: bit strings assigned for characters of alphabet

Two types of codes:

- firced-length encorling (e.g., ASCII)
- variable-length encoding (e,g., Morse code)

Prefics-firee codes: no codeword is a prefix of another codeword

Problem: If frequencies of the character occurrences are known, what is the best binary prefix-free code?

Huffman codes

- Any binary tree with edges labeled with 0's and 1's yields a prefix-free code of characters assigned to its leaves

Optimal binary tree minimizing the expected (weighted average) length of a codeword can be constructed as follows

Euffiman's algorithon

Initialize n one-node trees with alphabet characters and the tree weights with their frequencies.

Repeat the following step $n-1$ times: join two binary trees with smallest weights into one (as left and right subtrees) and make its weight equal the sum of the weights of the two trees.

Mark edges leading to left and right subtrees with 0's and 1's, respectively.
character A B C D

frequency $0.35 \quad 0.1 \quad 0.2 \quad 0.2 \quad 0.15$
codeword $11 \quad 10000 \quad 01101$
average bits per character: 2.25
for fixed-length encoding: 3
compression ratio: $(3-2.25) / 3^{*} 100 \%=$ 25%

