
Chapter 9 Chapter 9

Greedy TechniqueGreedy Technique

Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

9-2Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

Greedy TechniqueGreedy Technique

Constructs a solution to an Constructs a solution to an optimization problemoptimization problem piece by piece by

piece through a sequence of choices that are:piece through a sequence of choices that are:

 feasiblefeasible

 locally optimallocally optimal

 irrevocableirrevocable

For some problems, yields an optimal solution for every instance.For some problems, yields an optimal solution for every instance.

For most, does not but can be useful for fast approximations.For most, does not but can be useful for fast approximations.

9-3Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

Applications of the Greedy StrategyApplications of the Greedy Strategy

 Optimal solutions:Optimal solutions:

• change making for “normal” coin denominationschange making for “normal” coin denominations

• minimum spanning tree (MST)minimum spanning tree (MST)

• single-source shortest paths single-source shortest paths

• simple scheduling problemssimple scheduling problems

• Huffman codesHuffman codes

 Approximations:Approximations:

• traveling salesman problem (TSP)traveling salesman problem (TSP)

• knapsack problemknapsack problem

• other combinatorial optimization problemsother combinatorial optimization problems

9-4Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

Change-Making ProblemChange-Making Problem

Given unlimited amounts of coins of denominations Given unlimited amounts of coins of denominations dd1 1 > … > > … > ddm m , ,

give change for amount give change for amount n n with the least number of coinswith the least number of coins

Example: Example: dd1 1 = 25c, = 25c, dd2 2 =10c, =10c, dd3 3 = 5c, = 5c, dd4 4 = 1c and = 1c and n = n = 48c48c

Greedy solution: Greedy solution:

Greedy solution isGreedy solution is
 optimal for any amount and “normal’’ set of denominationsoptimal for any amount and “normal’’ set of denominations
 may not be optimal for arbitrary coin denominationsmay not be optimal for arbitrary coin denominations

9-5Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

Minimum Spanning Tree (MST)Minimum Spanning Tree (MST)

 Spanning treeSpanning tree of a connected graph of a connected graph GG: a connected acyclic : a connected acyclic
subgraph of subgraph of G G that includes all of that includes all of GG’s vertices’s vertices

 Minimum spanning treeMinimum spanning tree of a weighted, connected graph of a weighted, connected graph GG: a : a
spanning tree of spanning tree of GG of minimum total weight of minimum total weight

Example:Example:

c

db

a

6

2

4

3

1

9-6Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

Prim’s MST algorithmPrim’s MST algorithm

 Start with tree Start with tree TT11 consisting of one (any) vertex and “grow” consisting of one (any) vertex and “grow”

tree one vertex at a time to produce MST through tree one vertex at a time to produce MST through a series of a series of
expanding subtrees Texpanding subtrees T11, T, T22, …, T, …, Tnn

 On each iteration, On each iteration, construct Tconstruct Tii+1+1 from T from Ti i by adding vertex by adding vertex

not in not in TTi i that is that is closest to those already in closest to those already in TTii (this is a (this is a

“greedy” step!)“greedy” step!)

 Stop when all vertices are includedStop when all vertices are included

9-7Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

ExampleExample

c

db

a

4

2
6

1

3

9-8Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

Notes about Prim’s algorithmNotes about Prim’s algorithm

 Proof by induction that this construction actually yields MST Proof by induction that this construction actually yields MST

 Needs priority queue for locating closest fringe vertexNeeds priority queue for locating closest fringe vertex

 EfficiencyEfficiency

• O(O(nn22)) for weight matrix representation of graph and array for weight matrix representation of graph and array
implementation of priority queue implementation of priority queue

• OO((mm log log nn) for adjacency list representation of graph with) for adjacency list representation of graph with
n n vertices and vertices and m m edges and min-heap implementation of edges and min-heap implementation of
priority queuepriority queue

9-9Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

Another greedy algorithm for MST: Kruskal’sAnother greedy algorithm for MST: Kruskal’s

 Sort the edges in nondecreasing order of lengthsSort the edges in nondecreasing order of lengths

 ““Grow” tree one edge at a time to produce MST through Grow” tree one edge at a time to produce MST through a a
series of expanding forests Fseries of expanding forests F11, F, F22, …, F, …, Fn-n-11

 On each iteration, add the next edge on the sorted list unless On each iteration, add the next edge on the sorted list unless
this would create a cycle. (If it would, skip the edge.)this would create a cycle. (If it would, skip the edge.)

9-10Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

ExampleExample

c

db

a

4

2
6

1

3

9-11Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

Notes about Kruskal’s algorithmNotes about Kruskal’s algorithm

 Algorithm looks easier than Prim’s but is harder to Algorithm looks easier than Prim’s but is harder to
implement (checking for cycles!)implement (checking for cycles!)

 Cycle checking: a cycle is created iff added edge connects Cycle checking: a cycle is created iff added edge connects
vertices in the same connected componentvertices in the same connected component

 Union-find Union-find algorithms – see section 9.2algorithms – see section 9.2

9-12Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

Minimum spanning tree vs. Steiner treeMinimum spanning tree vs. Steiner tree

c

db

a 1

1 1

1

c

db

a

vs

9-13Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

Shortest paths – Dijkstra’s algorithmShortest paths – Dijkstra’s algorithm

Single Source Shortest Paths ProblemSingle Source Shortest Paths Problem: Given a weighted : Given a weighted

connected graph G, find shortest paths from source vertex connected graph G, find shortest paths from source vertex ss

to each of the other verticesto each of the other vertices

Dijkstra’s algorithmDijkstra’s algorithm: Similar to Prim’s MST algorithm, with : Similar to Prim’s MST algorithm, with

a different way of computing numerical labels: Among verticesa different way of computing numerical labels: Among vertices

not already in the tree, it finds vertex not already in the tree, it finds vertex uu with the smallest with the smallest sumsum

 ddvv + + ww((vv,,uu))

where where

 vv is a vertex for which shortest path has been already found is a vertex for which shortest path has been already found
 on preceding iterations (such vertices form a tree) on preceding iterations (such vertices form a tree)

 ddvv is the length of the shortest path form source to is the length of the shortest path form source to vv

 w w((vv,,uu) is the length (weight) of edge from) is the length (weight) of edge from vv to to uu

9-14Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

ExampleExample

d
4

Tree vertices Remaining verticesTree vertices Remaining vertices

 a(-,0) b(a,3) c(-,∞) d(a,7) e(-,∞)

a

b
4

e

3
7

6
2 5

c

a

b

d

4
c

e

3

7 4

6
2 5

a

b

d

4
c

e

3

7 4

6
2 5

a

b

d

4
c

e

3

7 4

6
2 5

 b(a,3) c(b,3+4) d(b,3+2) e(-,∞)

 d(b,5) c(b,7) e(d,5+4)

 c(b,7) e(d,9)

 e(d,9)

d

a

b

d

4
c

e

3

7 4

6
2 5

9-15Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

Notes on Dijkstra’s algorithmNotes on Dijkstra’s algorithm

 Doesn’t work for graphs with negative weightsDoesn’t work for graphs with negative weights

 Applicable to both undirected and directed graphsApplicable to both undirected and directed graphs

 EfficiencyEfficiency

• O(|V|O(|V|22) for graphs represented by weight matrix and) for graphs represented by weight matrix and
array implementation of priority queuearray implementation of priority queue

• O(|E|log|V|) for graphs represented by adj. lists and min-O(|E|log|V|) for graphs represented by adj. lists and min-
heap implementation of priority queueheap implementation of priority queue

 Don’t mix up Dijkstra’s algorithm with Prim’s algorithm!Don’t mix up Dijkstra’s algorithm with Prim’s algorithm!

9-16Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

Coding ProblemCoding Problem

CodingCoding: assignment of bit strings to alphabet characters: assignment of bit strings to alphabet characters

CodewordsCodewords: bit strings assigned for characters of alphabet: bit strings assigned for characters of alphabet

Two types of codes:Two types of codes:
 fixed-length encodingfixed-length encoding (e.g., ASCII) (e.g., ASCII)

 variable-length encodingvariable-length encoding (e,g., Morse code) (e,g., Morse code)

Prefix-free codesPrefix-free codes: no codeword is a prefix of another codeword: no codeword is a prefix of another codeword

Problem: If frequencies of the character occurrences areProblem: If frequencies of the character occurrences are

 known, what is the best binary prefix-free code?known, what is the best binary prefix-free code?

9-17Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

Huffman codesHuffman codes

 Any binary tree with edges labeled with 0’s and 1’s yields a prefix-free Any binary tree with edges labeled with 0’s and 1’s yields a prefix-free
code of characters assigned to its leavescode of characters assigned to its leaves

 Optimal binary tree minimizing the expected (weighted average) length Optimal binary tree minimizing the expected (weighted average) length
of a codeword can be constructed as followsof a codeword can be constructed as follows

Huffman’s algorithmHuffman’s algorithm

Initialize Initialize nn one-node trees with alphabet characters and the tree weights one-node trees with alphabet characters and the tree weights

with their frequencies.with their frequencies.

Repeat the following step Repeat the following step nn-1 times: join two binary trees with smallest -1 times: join two binary trees with smallest

weights into one (as left and right subtrees) and make its weight equal weights into one (as left and right subtrees) and make its weight equal

the sum of the weights of the two trees.the sum of the weights of the two trees.

Mark edges leading to left and right subtrees with 0’s and 1’s, Mark edges leading to left and right subtrees with 0’s and 1’s,

respectively.respectively.

9-18Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

ExampleExample

character Acharacter A B C D B C D __
frequency 0.35 0.1 0.2 0.2 0.15frequency 0.35 0.1 0.2 0.2 0.15

codeword 11 100 00 01 101codeword 11 100 00 01 101

average bits per character: 2.25average bits per character: 2.25

for fixed-length encoding: 3for fixed-length encoding: 3

compression ratiocompression ratio: (3-2.25)/3*100% = : (3-2.25)/3*100% =
25%25%

0.25

0.1

B

0.15

_

0.2

C

0.2

D

0.35

A

0.2

C

0.2

D

0.35

A

0.1

B

0.15

_

0.4

0.2

C

0.2

D

0.6

0.25

0.1

B

0.15

_

0.6

1.0

0 1

0.4

0.2

C

0.2

D
0.25

0.1

B

0.15

_

0 1 0

0

1

1

0.25

0.1

B

0.15

_

0.35

A

0.4

0.2

C

0.2

D

0.35

A

0.35

A

