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Dynamic ProgrammingDynamic Programming    

  DDynamic Programming  ynamic Programming  is  a general algorithm design technique is  a general algorithm design technique 
  for solving problems defined by recurrences with overlappingfor solving problems defined by recurrences with overlapping
  subproblemssubproblems

•    Invented by American mathematician Richard Bellman in the  Invented by American mathematician Richard Bellman in the  
1950s to solve optimization problems and later assimilated by CS1950s to solve optimization problems and later assimilated by CS

•  “  “Programming” here means “planning”Programming” here means “planning”

•    Main idea:Main idea:
- set up a recurrence relating a solution to a larger instance  set up a recurrence relating a solution to a larger instance  

to solutions of some smaller instancesto solutions of some smaller instances
-  solve smaller instances once-  solve smaller instances once
- record solutions in a table record solutions in a table 
- extract solution to the initial instance from that tableextract solution to the initial instance from that table
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Example: Fibonacci numbersExample: Fibonacci numbers    

•    Recall definition of Fibonacci numbers:Recall definition of Fibonacci numbers:

FF((nn)) = F = F((nn-1)-1) + F + F((nn-2)-2)
FF(0)(0) =  = 00
FF(1)(1) =  = 11

• Computing the Computing the nnthth Fibonacci number recursively (top-down): Fibonacci number recursively (top-down):

                                                                    FF((nn))

                        FF((n-n-1)             1)              +             F +             F((n-n-2)2)

FF((n-n-2)     2)     +     F+     F((n-n-3)          3)          FF((n-n-3)     3)     +     F+     F((n-n-4)4)

                                          ......
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Example: Fibonacci numbers  (cont.)Example: Fibonacci numbers  (cont.)     

Computing the Computing the nnthth Fibonacci number using bottom-up iteration and recording  Fibonacci number using bottom-up iteration and recording 
results:results:

    FF(0)(0) =  = 00
    FF(1)(1) =  = 11  
    FF(2)(2) =  = 1+0 = 11+0 = 1
  …      …    
    FF((nn-2) = -2) = 
    FF((nn-1) = -1) = 
    FF((nn) = ) = FF((nn-1)-1) + F + F((nn-2)-2)

    
  Efficiency:Efficiency:
                - time- time
                - space- space

 
     0 
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 .  .  . 
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Examples of DP algorithmsExamples of DP algorithms

•    Computing a binomial coefficientComputing a binomial coefficient

•    Warshall’s algorithm for transitive closureWarshall’s algorithm for transitive closure

•    Floyd’s algorithm for all-pairs shortest pathsFloyd’s algorithm for all-pairs shortest paths

•    Constructing an optimal binary search treeConstructing an optimal binary search tree

•    Some instances of difficult discrete optimization problems:Some instances of difficult discrete optimization problems:
  - traveling salesman- traveling salesman
  - knapsack- knapsack
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Computing a binomial coefficient by DPComputing a binomial coefficient by DP

Binomial coefficients are coefficients of the binomial formula:Binomial coefficients are coefficients of the binomial formula:
((a + ba + b))nn =  = CC((nn,0),0)aannbb0 0  + . . . + + . . . + CC((nn,,kk))aan-kn-kbbkk  + . . . + . . . + CC((nn,,nn))aa00bbnn  

Recurrence: Recurrence: CC((nn,,kk) = ) = CC((n-n-1,1,kk) + ) + CC((nn-1,-1,kk-1)  for -1)  for n > k n > k > 0> 0
                                            CC((nn,0) = 1,   ,0) = 1,   CC((nn,,nn) = 1  for ) = 1  for n n ≥≥ 0 0
  
Value of Value of CC((nn,,kk) can be computed by filling a table:) can be computed by filling a table:

  0   1   2  .  .  .   0   1   2  .  .  .   kk-1          -1          kk
            0   10   1
            1   1   11   1   1
            ..
            ..
            ..
        n-n-1                 1                 CC((n-n-1,1,kk-1) -1) CC((n-n-1,1,kk) ) 
            nn CC((nn,,kk) ) 
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Computing Computing CC((n,kn,k): pseudocode and ): pseudocode and 
analysisanalysis

Time efficiency: Time efficiency: ΘΘ((nknk))

Space efficiency: Space efficiency: ΘΘ((nknk))
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Knapsack Problem by DPKnapsack Problem by DP

Given Given nn items  of  items  of 

              integer weights:    integer weights:    ww1   1     ww22  …  w  …  wnn

              values:                    values:                    vv1   1       vv22   …  v …  vnn

                          a knapsack of integer capacity a knapsack of integer capacity WW  
find most valuable subset of the items that fit into the knapsackfind most valuable subset of the items that fit into the knapsack

Consider instance defined by first Consider instance defined by first i i items and capacity items and capacity j j ((j j ≤≤  WW))..

Let Let VV[[ii ,,jj] be optimal value of such instance.  Then] be optimal value of such instance.  Then
    max {max {VV[[ii-1,-1,jj], ], vvii +  + VV[[ii-1,-1,j- j- wwii]}   if ]}   if j- j- wwi i ≥≥ 0 0

VV[[ii ,,jj] =] =
      VV[[ii-1,-1,jj]                                          if ]                                          if j- j- wwi i < 0< 0

Initial conditions: Initial conditions: VV[0,[0,jj] = 0  and ] = 0  and VV[[ii ,0] = 0,0] = 0
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Knapsack Problem by DP (example)Knapsack Problem by DP (example)

Example:  Knapsack of capacity Example:  Knapsack of capacity W W = 5= 5
item      weight      value             item      weight      value             

      1             2             $121             2             $12
      2             1             $102             1             $10

      3             3             $203             3             $20
      4             2             $15                capacity 4             2             $15                capacity jj

                                                                              0     1     2     3     40     1     2     3     4          55
                                                                                    00

ww1 1 = 2, = 2, vv11==  12    112    1

ww2 2 = 1, = 1, vv22==  10    210    2

ww3 3 = 3, = 3, vv33==  20    320    3

ww4  4  = 2, = 2, vv44==  15   415   4               ??
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Warshall’s  Algorithm: Transitive Warshall’s  Algorithm: Transitive 
ClosureClosure

•  Computes the transitive closure of a relationComputes the transitive closure of a relation

•  Alternatively: existence of all nontrivial paths in a digraphAlternatively: existence of all nontrivial paths in a digraph

•  Example of transitive closure:Example of transitive closure:

3

42

1

0  0  1  0
1  0  0  1
0  0  0  0
0  1  0  0

0  0  1  0
1  1  11  1  1
0  0  0  0
11  1  1  11  1

3

42

1
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Warshall’s  AlgorithmWarshall’s  Algorithm

Constructs transitive closure Constructs transitive closure TT as the last matrix in the sequence  as the last matrix in the sequence 
of of nn-by--by-n n matrices  matrices  RR(0)(0), … ,, … , RR((kk)), … ,, … , RR((nn))  wherewhere
RR((kk))[[ii ,,jj] = 1 iff there is nontrivial path from ] = 1 iff there is nontrivial path from ii  to  to jj  with only first   with only first k k 
vertices allowed as intermediate vertices allowed as intermediate 
Note that Note that RR(0) (0) = = A A (adjacency matrix)(adjacency matrix),, RR((nn))

  = T  = T  (transitive closure)(transitive closure) 

3

42

1
3

42

1
3

42

1
3

42

1

     R(0)

0  0  1  0
1  0  0  1
0  0  0  0
0  1  0  0

     R(1)

0  0  1  0
1  0    11  1
0  0  0  0
0  1  0  0

     R(2)

0  0  1  0
1  0  1  1
0  0  0  0
1 1  1  1  11  1

     R(3)

0  0  1  0
1  0  1  1
0  0  0  0
1  1  1  1

     R(4)

0  0  1  0
1  11  1  1
0  0  0  0
1  1  1  1

3

42

1
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Warshall’s  Algorithm (recurrence)Warshall’s  Algorithm (recurrence)

On theOn the k- k-th iteration, the algorithm determines for every pair of th iteration, the algorithm determines for every pair of 
vertices vertices i, ji, j  if a path exists from if a path exists from i i andand j  j with just vertices 1,…,with just vertices 1,…,k k 
allowedallowed  asas  intermediateintermediate

RR((kk-1)-1)[[i,ji,j]                            (path using just 1 ,…,]                            (path using just 1 ,…,k-k-1)1)
  RR((kk))[[i,ji,j] =            or ] =            or 

          RR((kk-1)-1)[[i,ki,k]  and ]  and RR((kk-1)-1)[[k,jk,j]    (path from ]    (path from i i to to kk  
                                                                                                                    and from and from kk to  to ii
                                                                                                                    using just 1 ,…,using just 1 ,…,k-k-1)1)

i

j

k

{
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Warshall’s  Algorithm (matrix generation)Warshall’s  Algorithm (matrix generation)

Recurrence relating elements Recurrence relating elements RR((kk)) to elements of  to elements of RR((kk-1)-1) is: is: 
        

RR((kk))[[i,ji,j] = ] = RR((kk-1)-1)[[i,ji,j] or] or  ((RR((kk-1)-1)[[i,ki,k] and ] and RR((kk-1)-1)[[k,jk,j])])

It implies the following rules for generating It implies the following rules for generating RR((kk)) from  from RR((kk-1)-1)::

Rule 1Rule 1  If an element in row If an element in row i i and column and column jj is 1 in  is 1 in RR((k-k-1)1), , 
             it remains 1 in              it remains 1 in RR((kk))

Rule 2  Rule 2  If an element in row If an element in row i i and column and column jj is 0 in  is 0 in RR((k-k-1)1),, 
             it has to be changed to 1 in it has to be changed to 1 in RR((kk)) if and only if  if and only if 
             the element in its row              the element in its row ii  and column  and column kk and the element and the element
                          in its column in its column jj and row  and row kk are both 1’s in  are both 1’s in RR((k-k-1)1) 
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Warshall’s Algorithm (example)Warshall’s Algorithm (example)

3

42

1 0  0  1  0
1  0  0  1
0  0  0  0
0  1  0  0

R(0)  =

0  0  1  0
1  0  1  1
0  0  0  0
0  1  0  0

R(1)  =

0  0  1  0
1  0  1  1
0  0  0  0
1  1  1  1

R(2)  =

0  0  1  0
1  0  1  1
0  0  0  0
1  1  1  1

R(3)  =

0  0  1  0
1  1  1  1
0  0  0  0
1  1  1  1

R(4)  =
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Warshall’s Algorithm (pseudocode and analysis)Warshall’s Algorithm (pseudocode and analysis)

Time efficiency: Time efficiency: ΘΘ((nn33))

Space efficiency: Matrices can be written over their predecessorsSpace efficiency: Matrices can be written over their predecessors
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Floyd’s Algorithm: All pairs shortest pathsFloyd’s Algorithm: All pairs shortest paths

Problem:    In a weighted (di)graph, find shortest paths betweenProblem:    In a weighted (di)graph, find shortest paths between
                    every pair of vertices                    every pair of vertices

Same idea: construct solution through series of matrices Same idea: construct solution through series of matrices DD(0)(0), …,, …,
                                        D D ((nn)) using increasing subsets of the vertices allowed using increasing subsets of the vertices allowed
                    as intermediate                    as intermediate

Example:Example: 3

42

1

4

1
6

1

5

3
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Floyd’s Algorithm (matrix generation)Floyd’s Algorithm (matrix generation)

On theOn the k- k-th iteration, the algorithm determines shortest paths th iteration, the algorithm determines shortest paths 
between every pair of vertices between every pair of vertices i, j i, j that use only vertices among that use only vertices among 
1,…,1,…,k k as intermediateas intermediate

                                DD((kk))[[i,ji,j] =  min {] =  min {DD((kk-1)-1)[[i,ji,j],  ],  DD((kk-1)-1)[[i,ki,k]  + ]  + DD((kk-1)-1)[[k,jk,j]}]}

i

j

k

DD((kk-1)-1)[[i,ji,j]]

DD((kk-1)-1)[[i,ki,k]]

DD((kk-1)-1)[[k,jk,j]]
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Floyd’s Algorithm (example)Floyd’s Algorithm (example)

0   ∞  3   ∞ 
2   0   ∞  ∞
∞  7   0   1
6   ∞  ∞  0

D(0)  = 

0   ∞  3   ∞ 
2   0   5   ∞
∞  7   0   1
6   ∞  9   0

D(1)  =

0   ∞  3   ∞
2   0   5   ∞
9   7   0   1
6   ∞  9   0

D(2)  =

0  10  3  4
2   0   5  6
9   7   0  1
6  16  9  0

 D(3)  =

0  10  3  4
2   0   5  6
7   7   0  1
6  16  9  0

D(4)  =

3
1

3

2

6 7

4

1 2
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Floyd’s Algorithm (pseudocode and analysis)Floyd’s Algorithm (pseudocode and analysis)

Time efficiency: Time efficiency: ΘΘ((nn33))

Space efficiency: Matrices can be written over their predecessorsSpace efficiency: Matrices can be written over their predecessors

Note: Shortest paths themselves can be found, tooNote: Shortest paths themselves can be found, too
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Optimal Binary Search TreesOptimal Binary Search Trees

Problem: Given Problem: Given n n keys keys aa1 1 < …< < …< aan n and probabilities and probabilities pp11  ≤ ≤ … ≤ … ≤ ppnn

                                                 searching for them, find a BST with a minimumsearching for them, find a BST with a minimum

                 average number of comparisons in successful search.                 average number of comparisons in successful search.

Since total number of BSTs with Since total number of BSTs with n n nodes is given by C(2nodes is given by C(2nn,,nn)/)/
((nn+1), which grows exponentially, brute force is hopeless. +1), which grows exponentially, brute force is hopeless. 

Example: What is an optimal BST for keys Example: What is an optimal BST for keys AA, , BB,, C C, and , and D D withwith
                  search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?                  search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?
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DP for Optimal BST ProblemDP for Optimal BST Problem

Let Let CC[[i,ji,j] be minimum average number of comparisons made in ] be minimum average number of comparisons made in 
T[T[i,ji,j], optimal BST for keys ], optimal BST for keys aaii < …<  < …< aajj ,, where 1 ≤  where 1 ≤  i i ≤  ≤  j j ≤ ≤ n. n. 

Consider optimal BST among all BSTs with some Consider optimal BST among all BSTs with some aak  k  ((i i ≤  ≤  k k ≤≤  jj ) ) 

as their root; T[as their root; T[i,ji,j] is the best among them. ] is the best among them.  
a

Optimal
BST for

a   , ...,  a

Optimal
BST for

a      , ...,  ai

k

k-1 k+1 j

CC[[i,ji,j] =] =

  min  {min  {ppk k · · 1 +1 +

  

                      ∑ ∑ ppss  (level (level aas s in T[in T[i,k-i,k-1] +1)1] +1) ++

           ∑            ∑ ppss  (level (level aass  in T[in T[k+k+11,j,j] +1)}] +1)}

i i ≤ ≤ k k ≤≤ jj

s s == ii

k-k-11

s =s =k+k+11

jj
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goal0

0

C[i,j]

0

1

n+1

0 1 n

p 1

p
2

np

i

j

DP for Optimal BST Problem (cont.)DP for Optimal BST Problem (cont.)

After simplifications, we obtain the recurrence for After simplifications, we obtain the recurrence for CC[[i,ji,j]:]:

CC[[i,ji,j] = ] =   min {min {CC[[ii ,,kk-1] + -1] + CC[[kk+1,+1,jj]} + ]} + ∑∑  ppss   forfor 1 1 ≤≤    i i ≤≤    j j ≤≤  nn

CC[[i,ii,i] = ] = ppi    i    for 1 for 1 ≤≤    i i ≤≤    j j ≤≤  nn

 

  

                      

                      

s s == ii

jj

i i ≤≤  k k ≤≤ jj



Example:   key                  Example:   key                  A     B     C     DA     B     C     D

                                        probability   0.1   0.2   0.4  0.3probability   0.1   0.2   0.4  0.3

  
                      

                      

The tables below are filled diagonal by diagonal: the left one is filled The tables below are filled diagonal by diagonal: the left one is filled 
using the recurrence using the recurrence 
                                        CC[[i,ji,j] = ] =  min {min {CC[[ii ,,kk-1] + -1] + CC[[kk+1,+1,jj]} + ∑ ]} + ∑ pps ,    s ,    CC[[i,ii,i] = ] = ppi i ;;

the right one, for trees’ roots, records the right one, for trees’ roots, records kk’s values giving the minima’s values giving the minima 

  0055

  .3.3  0044

1.01.0  .4.4  0033

1.41.4  .8.8.2.2  0022

1.71.71.11.1.4.4.1.1    0011

  44  33  22  11    00

55

  4444

  33  3333

  33  33  2222

  33  33  22  1111

  44  33  22  11  00

i i ≤ ≤ k k ≤≤ jj s s == ii

jj

optimal BSToptimal BST

B

A

C

D

i i   jj
i i   jj
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Optimal Binary Search TreesOptimal Binary Search Trees
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Analysis DP for Optimal BST ProblemAnalysis DP for Optimal BST Problem

Time efficiency:  Time efficiency:  ΘΘ((nn33) but can be reduced to ) but can be reduced to ΘΘ((nn22)) by takingby taking
                              advantage of monotonicity of entries in the                              advantage of monotonicity of entries in the
                              root table, i.e.,                               root table, i.e., RR[[i,ji,j] is always in the range ] is always in the range 
                              between                               between RR[[i,ji,j-1] and R[-1] and R[ii+1,j]+1,j]

Space efficiency: Space efficiency: ΘΘ((nn22))

Method can be expended to include unsuccessful searchesMethod can be expended to include unsuccessful searches

 

  

                      

                      


