
Chapter 8Chapter 8

Dynamic ProgrammingDynamic Programming

Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

8-2Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Dynamic ProgrammingDynamic Programming

 DDynamic Programming ynamic Programming is a general algorithm design technique is a general algorithm design technique
 for solving problems defined by recurrences with overlappingfor solving problems defined by recurrences with overlapping
 subproblemssubproblems

• Invented by American mathematician Richard Bellman in the Invented by American mathematician Richard Bellman in the
1950s to solve optimization problems and later assimilated by CS1950s to solve optimization problems and later assimilated by CS

• “ “Programming” here means “planning”Programming” here means “planning”

• Main idea:Main idea:
- set up a recurrence relating a solution to a larger instance set up a recurrence relating a solution to a larger instance

to solutions of some smaller instancesto solutions of some smaller instances
- solve smaller instances once- solve smaller instances once
- record solutions in a table record solutions in a table
- extract solution to the initial instance from that tableextract solution to the initial instance from that table

8-3Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Example: Fibonacci numbersExample: Fibonacci numbers

• Recall definition of Fibonacci numbers:Recall definition of Fibonacci numbers:

FF((nn)) = F = F((nn-1)-1) + F + F((nn-2)-2)
FF(0)(0) = = 00
FF(1)(1) = = 11

• Computing the Computing the nnthth Fibonacci number recursively (top-down): Fibonacci number recursively (top-down):

 FF((nn))

 FF((n-n-1) 1) + F + F((n-n-2)2)

FF((n-n-2) 2) + F+ F((n-n-3) 3) FF((n-n-3) 3) + F+ F((n-n-4)4)

8-4Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Example: Fibonacci numbers (cont.)Example: Fibonacci numbers (cont.)

Computing the Computing the nnthth Fibonacci number using bottom-up iteration and recording Fibonacci number using bottom-up iteration and recording
results:results:

 FF(0)(0) = = 00
 FF(1)(1) = = 11
 FF(2)(2) = = 1+0 = 11+0 = 1
 … …
 FF((nn-2) = -2) =
 FF((nn-1) = -1) =
 FF((nn) =) = FF((nn-1)-1) + F + F((nn-2)-2)

 Efficiency:Efficiency:
 - time- time
 - space- space

 0

 1

 1

 . . .

 F (n-2)

F (n-1)

 F(n)

8-5Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Examples of DP algorithmsExamples of DP algorithms

• Computing a binomial coefficientComputing a binomial coefficient

• Warshall’s algorithm for transitive closureWarshall’s algorithm for transitive closure

• Floyd’s algorithm for all-pairs shortest pathsFloyd’s algorithm for all-pairs shortest paths

• Constructing an optimal binary search treeConstructing an optimal binary search tree

• Some instances of difficult discrete optimization problems:Some instances of difficult discrete optimization problems:
 - traveling salesman- traveling salesman
 - knapsack- knapsack

8-6Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Computing a binomial coefficient by DPComputing a binomial coefficient by DP

Binomial coefficients are coefficients of the binomial formula:Binomial coefficients are coefficients of the binomial formula:
((a + ba + b))nn = = CC((nn,0),0)aannbb0 0 + . . . + + . . . + CC((nn,,kk))aan-kn-kbbkk + . . . + . . . + CC((nn,,nn))aa00bbnn

Recurrence: Recurrence: CC((nn,,kk) =) = CC((n-n-1,1,kk) +) + CC((nn-1,-1,kk-1) for -1) for n > k n > k > 0> 0
 CC((nn,0) = 1, ,0) = 1, CC((nn,,nn) = 1 for) = 1 for n n ≥≥ 0 0

Value of Value of CC((nn,,kk) can be computed by filling a table:) can be computed by filling a table:

 0 1 2 . . . 0 1 2 . . . kk-1 -1 kk
 0 10 1
 1 1 11 1 1
 ..
 ..
 ..
 n-n-1 1 CC((n-n-1,1,kk-1) -1) CC((n-n-1,1,kk))
 nn CC((nn,,kk))

8-7Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Computing Computing CC((n,kn,k): pseudocode and): pseudocode and
analysisanalysis

Time efficiency: Time efficiency: ΘΘ((nknk))

Space efficiency: Space efficiency: ΘΘ((nknk))

8-8Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Knapsack Problem by DPKnapsack Problem by DP

Given Given nn items of items of

 integer weights: integer weights: ww1 1 ww22 … w … wnn

 values: values: vv1 1 vv22 … v … vnn

 a knapsack of integer capacity a knapsack of integer capacity WW
find most valuable subset of the items that fit into the knapsackfind most valuable subset of the items that fit into the knapsack

Consider instance defined by first Consider instance defined by first i i items and capacity items and capacity j j ((j j ≤≤ WW))..

Let Let VV[[ii ,,jj] be optimal value of such instance. Then] be optimal value of such instance. Then
 max {max {VV[[ii-1,-1,jj],], vvii + + VV[[ii-1,-1,j- j- wwii]} if]} if j- j- wwi i ≥≥ 0 0

VV[[ii ,,jj] =] =
 VV[[ii-1,-1,jj] if] if j- j- wwi i < 0< 0

Initial conditions: Initial conditions: VV[0,[0,jj] = 0 and] = 0 and VV[[ii ,0] = 0,0] = 0

8-9Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Knapsack Problem by DP (example)Knapsack Problem by DP (example)

Example: Knapsack of capacity Example: Knapsack of capacity W W = 5= 5
item weight value item weight value

 1 2 $121 2 $12
 2 1 $102 1 $10

 3 3 $203 3 $20
 4 2 $15 capacity 4 2 $15 capacity jj

 0 1 2 3 40 1 2 3 4 55
 00

ww1 1 = 2, = 2, vv11== 12 112 1

ww2 2 = 1, = 1, vv22== 10 210 2

ww3 3 = 3, = 3, vv33== 20 320 3

ww4 4 = 2, = 2, vv44== 15 415 4 ??

8-10Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm: Transitive Warshall’s Algorithm: Transitive
ClosureClosure

• Computes the transitive closure of a relationComputes the transitive closure of a relation

• Alternatively: existence of all nontrivial paths in a digraphAlternatively: existence of all nontrivial paths in a digraph

• Example of transitive closure:Example of transitive closure:

3

42

1

0 0 1 0
1 0 0 1
0 0 0 0
0 1 0 0

0 0 1 0
1 1 11 1 1
0 0 0 0
11 1 1 11 1

3

42

1

8-11Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s AlgorithmWarshall’s Algorithm

Constructs transitive closure Constructs transitive closure TT as the last matrix in the sequence as the last matrix in the sequence
of of nn-by--by-n n matrices matrices RR(0)(0), … ,, … , RR((kk)), … ,, … , RR((nn)) wherewhere
RR((kk))[[ii ,,jj] = 1 iff there is nontrivial path from] = 1 iff there is nontrivial path from ii to to jj with only first with only first k k
vertices allowed as intermediate vertices allowed as intermediate
Note that Note that RR(0) (0) = = A A (adjacency matrix)(adjacency matrix),, RR((nn))

 = T = T (transitive closure)(transitive closure)

3

42

1
3

42

1
3

42

1
3

42

1

 R(0)

0 0 1 0
1 0 0 1
0 0 0 0
0 1 0 0

 R(1)

0 0 1 0
1 0 11 1
0 0 0 0
0 1 0 0

 R(2)

0 0 1 0
1 0 1 1
0 0 0 0
1 1 1 1 11 1

 R(3)

0 0 1 0
1 0 1 1
0 0 0 0
1 1 1 1

 R(4)

0 0 1 0
1 11 1 1
0 0 0 0
1 1 1 1

3

42

1

8-12Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm (recurrence)Warshall’s Algorithm (recurrence)

On theOn the k- k-th iteration, the algorithm determines for every pair of th iteration, the algorithm determines for every pair of
vertices vertices i, ji, j if a path exists from if a path exists from i i andand j j with just vertices 1,…,with just vertices 1,…,k k
allowedallowed asas intermediateintermediate

RR((kk-1)-1)[[i,ji,j] (path using just 1 ,…,] (path using just 1 ,…,k-k-1)1)
 RR((kk))[[i,ji,j] = or] = or

 RR((kk-1)-1)[[i,ki,k] and] and RR((kk-1)-1)[[k,jk,j] (path from] (path from i i to to kk
 and from and from kk to to ii
 using just 1 ,…,using just 1 ,…,k-k-1)1)

i

j

k

{

8-13Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm (matrix generation)Warshall’s Algorithm (matrix generation)

Recurrence relating elements Recurrence relating elements RR((kk)) to elements of to elements of RR((kk-1)-1) is: is:

RR((kk))[[i,ji,j] =] = RR((kk-1)-1)[[i,ji,j] or] or ((RR((kk-1)-1)[[i,ki,k] and] and RR((kk-1)-1)[[k,jk,j])])

It implies the following rules for generating It implies the following rules for generating RR((kk)) from from RR((kk-1)-1)::

Rule 1Rule 1 If an element in row If an element in row i i and column and column jj is 1 in is 1 in RR((k-k-1)1), ,
 it remains 1 in it remains 1 in RR((kk))

Rule 2 Rule 2 If an element in row If an element in row i i and column and column jj is 0 in is 0 in RR((k-k-1)1),,
 it has to be changed to 1 in it has to be changed to 1 in RR((kk)) if and only if if and only if
 the element in its row the element in its row ii and column and column kk and the element and the element
 in its column in its column jj and row and row kk are both 1’s in are both 1’s in RR((k-k-1)1)

8-14Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm (example)Warshall’s Algorithm (example)

3

42

1 0 0 1 0
1 0 0 1
0 0 0 0
0 1 0 0

R(0) =

0 0 1 0
1 0 1 1
0 0 0 0
0 1 0 0

R(1) =

0 0 1 0
1 0 1 1
0 0 0 0
1 1 1 1

R(2) =

0 0 1 0
1 0 1 1
0 0 0 0
1 1 1 1

R(3) =

0 0 1 0
1 1 1 1
0 0 0 0
1 1 1 1

R(4) =

8-15Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm (pseudocode and analysis)Warshall’s Algorithm (pseudocode and analysis)

Time efficiency: Time efficiency: ΘΘ((nn33))

Space efficiency: Matrices can be written over their predecessorsSpace efficiency: Matrices can be written over their predecessors

8-16Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Floyd’s Algorithm: All pairs shortest pathsFloyd’s Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths betweenProblem: In a weighted (di)graph, find shortest paths between
 every pair of vertices every pair of vertices

Same idea: construct solution through series of matrices Same idea: construct solution through series of matrices DD(0)(0), …,, …,
 D D ((nn)) using increasing subsets of the vertices allowed using increasing subsets of the vertices allowed
 as intermediate as intermediate

Example:Example: 3

42

1

4

1
6

1

5

3

8-17Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Floyd’s Algorithm (matrix generation)Floyd’s Algorithm (matrix generation)

On theOn the k- k-th iteration, the algorithm determines shortest paths th iteration, the algorithm determines shortest paths
between every pair of vertices between every pair of vertices i, j i, j that use only vertices among that use only vertices among
1,…,1,…,k k as intermediateas intermediate

 DD((kk))[[i,ji,j] = min {] = min {DD((kk-1)-1)[[i,ji,j],], DD((kk-1)-1)[[i,ki,k] +] + DD((kk-1)-1)[[k,jk,j]}]}

i

j

k

DD((kk-1)-1)[[i,ji,j]]

DD((kk-1)-1)[[i,ki,k]]

DD((kk-1)-1)[[k,jk,j]]

8-18Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Floyd’s Algorithm (example)Floyd’s Algorithm (example)

0 ∞ 3 ∞
2 0 ∞ ∞
∞ 7 0 1
6 ∞ ∞ 0

D(0) =

0 ∞ 3 ∞
2 0 5 ∞
∞ 7 0 1
6 ∞ 9 0

D(1) =

0 ∞ 3 ∞
2 0 5 ∞
9 7 0 1
6 ∞ 9 0

D(2) =

0 10 3 4
2 0 5 6
9 7 0 1
6 16 9 0

 D(3) =

0 10 3 4
2 0 5 6
7 7 0 1
6 16 9 0

D(4) =

3
1

3

2

6 7

4

1 2

8-19Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Floyd’s Algorithm (pseudocode and analysis)Floyd’s Algorithm (pseudocode and analysis)

Time efficiency: Time efficiency: ΘΘ((nn33))

Space efficiency: Matrices can be written over their predecessorsSpace efficiency: Matrices can be written over their predecessors

Note: Shortest paths themselves can be found, tooNote: Shortest paths themselves can be found, too

8-20Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Optimal Binary Search TreesOptimal Binary Search Trees

Problem: Given Problem: Given n n keys keys aa1 1 < …< < …< aan n and probabilities and probabilities pp11 ≤ ≤ … ≤ … ≤ ppnn

 searching for them, find a BST with a minimumsearching for them, find a BST with a minimum

 average number of comparisons in successful search. average number of comparisons in successful search.

Since total number of BSTs with Since total number of BSTs with n n nodes is given by C(2nodes is given by C(2nn,,nn)/)/
((nn+1), which grows exponentially, brute force is hopeless. +1), which grows exponentially, brute force is hopeless.

Example: What is an optimal BST for keys Example: What is an optimal BST for keys AA, , BB,, C C, and , and D D withwith
 search probabilities 0.1, 0.2, 0.4, and 0.3, respectively? search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

8-21Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

DP for Optimal BST ProblemDP for Optimal BST Problem

Let Let CC[[i,ji,j] be minimum average number of comparisons made in] be minimum average number of comparisons made in
T[T[i,ji,j], optimal BST for keys], optimal BST for keys aaii < …< < …< aajj ,, where 1 ≤ where 1 ≤ i i ≤ ≤ j j ≤ ≤ n. n.

Consider optimal BST among all BSTs with some Consider optimal BST among all BSTs with some aak k ((i i ≤ ≤ k k ≤≤ jj))

as their root; T[as their root; T[i,ji,j] is the best among them.] is the best among them.
a

Optimal
BST for

a , ..., a

Optimal
BST for

a , ..., ai

k

k-1 k+1 j

CC[[i,ji,j] =] =

 min {min {ppk k · · 1 +1 +

 ∑ ∑ ppss (level (level aas s in T[in T[i,k-i,k-1] +1)1] +1) ++

 ∑ ∑ ppss (level (level aass in T[in T[k+k+11,j,j] +1)}] +1)}

i i ≤ ≤ k k ≤≤ jj

s s == ii

k-k-11

s =s =k+k+11

jj

8-22Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

goal0

0

C[i,j]

0

1

n+1

0 1 n

p 1

p
2

np

i

j

DP for Optimal BST Problem (cont.)DP for Optimal BST Problem (cont.)

After simplifications, we obtain the recurrence for After simplifications, we obtain the recurrence for CC[[i,ji,j]:]:

CC[[i,ji,j] =] = min {min {CC[[ii ,,kk-1] + -1] + CC[[kk+1,+1,jj]} +]} + ∑∑ ppss forfor 1 1 ≤≤ i i ≤≤ j j ≤≤ nn

CC[[i,ii,i] =] = ppi i for 1 for 1 ≤≤ i i ≤≤ j j ≤≤ nn

s s == ii

jj

i i ≤≤ k k ≤≤ jj

Example: key Example: key A B C DA B C D

 probability 0.1 0.2 0.4 0.3probability 0.1 0.2 0.4 0.3

The tables below are filled diagonal by diagonal: the left one is filled The tables below are filled diagonal by diagonal: the left one is filled
using the recurrence using the recurrence
 CC[[i,ji,j] =] = min {min {CC[[ii ,,kk-1] + -1] + CC[[kk+1,+1,jj]} + ∑]} + ∑ pps , s , CC[[i,ii,i] =] = ppi i ;;

the right one, for trees’ roots, records the right one, for trees’ roots, records kk’s values giving the minima’s values giving the minima

 0055

 .3.3 0044

1.01.0 .4.4 0033

1.41.4 .8.8.2.2 0022

1.71.71.11.1.4.4.1.1 0011

 44 33 22 11 00

55

 4444

 33 3333

 33 33 2222

 33 33 22 1111

 44 33 22 11 00

i i ≤ ≤ k k ≤≤ jj s s == ii

jj

optimal BSToptimal BST

B

A

C

D

i i jj
i i jj

8-24Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Optimal Binary Search TreesOptimal Binary Search Trees

8-25Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Analysis DP for Optimal BST ProblemAnalysis DP for Optimal BST Problem

Time efficiency: Time efficiency: ΘΘ((nn33) but can be reduced to) but can be reduced to ΘΘ((nn22)) by takingby taking
 advantage of monotonicity of entries in the advantage of monotonicity of entries in the
 root table, i.e., root table, i.e., RR[[i,ji,j] is always in the range] is always in the range
 between between RR[[i,ji,j-1] and R[-1] and R[ii+1,j]+1,j]

Space efficiency: Space efficiency: ΘΘ((nn22))

Method can be expended to include unsuccessful searchesMethod can be expended to include unsuccessful searches

