Chapter 8

Dynamic Programming

Dynamic Programming

Dynamic Programming is a general algorithm design technique for solving problems defined by recurrences with overlapping subproblems

- Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems and later assimilated by CS
- "Programming" here means "planning"
- Main idea:
- set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
- solve smaller instances once
- record solutions in a table
- extract solution to the initial instance from that table

Example: Filbonacci numbers

- Recall definition of Fibonacci numbers:

$$
\begin{aligned}
& F^{\prime}(n)=F(n-1)+F(n-2) \\
& F^{\prime}(0)=0 \\
& F^{\prime}(1)=1
\end{aligned}
$$

- Computing the $\boldsymbol{n}^{\text {li }}$ Fibonacci number recursively (top-down):

Example: Fibonacci numbers (cont.)

Computing the $n^{\text {th }}$ Fibonacci number using bottom-up iteration and recording results:

$$
\begin{aligned}
& F(0)=0 \\
& F(1)=1 \\
& F(2)=1+0=1
\end{aligned}
$$

...
$F(n-2)=$
$F(n-1)=$
$F(n)=F(n-1)+F(n-2)$

0	1	1	\ldots	$F(n-2)$	$F(n-1)$	$F(n)$
Efficiencys						
- time						
- space						

Examples of DP algorithms

- Computing a binomial coefficient
- Warshall's algorithm for transitive closure
- Eloyds algorithm for all-pairs shortest paths
- Constructing an optimal binary search tree
- Some instances of difficult discrete optimization problems:
- traveling salesman
- knapsack

Computing a binomial coefficient by DP

Binomial coefficients are coefficients of the binomial formula:

$$
(a+b)^{n}=C(n, 0) a^{n} b^{0}+\ldots+C(n, k) a^{n-k} b^{k}+\ldots+C(n, n) a^{0} b^{n}
$$

Recurrence: $C(n, k)=C(n-1, k)+C(n-1, k-1)$ for $n>k>0$

$$
C(n, 0)=1, \quad C(n, n)=1 \text { for } n \geq 0
$$

Value of $C(n, k)$ can be computed by filling a table:

$$
012 \ldots k-1 \quad k
$$

111

。
$n-1$

$$
C(n-1, k-1) C(n-1, k)
$$

n

$$
C(n, k)
$$

anolysis

ALGORITHM Binomial (n, k)

//Computes $C(n, k)$ by the dynamic programming algorithm //Input: A pair of nonnegative integers $n \geq k \geq 0$
//Output: The value of $C(n, k)$
for $i \leftarrow 0$ to n do

$$
\begin{aligned}
& \qquad \text { for } j \leftarrow 0 \text { to } \min (i, k) \text { do } \\
& \text { if } j=0 \text { or } j=i \\
& \quad C[i, j] \leftarrow 1 \\
& \text { else } C[i, j] \leftarrow C[i-1, j-1]+C[i-1, j] \\
& \text { return } C[n, k]
\end{aligned}
$$

Time efficiency: © (nlk)

Knapsack Problem by DP

Given n items of

$$
\begin{array}{lllll}
\text { integer weights: } & w_{1} & w_{2} & \ldots & w_{n} \\
\text { values: } & v_{1} & v_{2} & \ldots & v_{n}
\end{array}
$$

a knapsack of integer capacity W
find most valuable subset of the items that fit into the knapsack

Consider instance defined by first i items and capacity $j(j \leq W)$. Let $V[i, j]$ be optimal value of such instance. Then $\max \left\{V[i-1, j], \nu_{i}+V\left[i-1, j-w_{i}\right]\right\} \quad$ if $j-w_{i} \geq 0$
$V[i, j]=$

$$
V[i-1, j] \quad \text { if } j-w_{i}<0
$$

Knapsack Problem by DP (example)

Example: Knapsack of capacity $W=5$
item weight value

1	2	$\$ 12$
2	1	$\$ 10$
3	3	$\$ 20$
4	2	$\$ 15$

capacity j
$\begin{array}{llllll}1 & 1 & 2 & 3 & 4 & 5\end{array}$

$w_{1}=2, v_{1}=12$	1
$w_{2}=1, v_{2}=10$	2
$w_{3}=3, v_{3}=20$	3
$w_{4}=2, v_{4}=15$	4

- Computes the transitive closure of a relation
- Alternatively: existence of all nontrivial paths in a digraph
- Example of transitive closure:

| 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |

0010
1111
0000
1111

Warshall's Algorithm

Constructs transitive closure T 'as the last matrix in the sequence of n-by- n matrices $R^{R^{(0)}}, \ldots, R^{(n)}, \ldots, R^{(n)}$ where
$\mathbb{R}^{(t)}[i, j]=1$ iff there is nontrivial path from i to j with only first k vertices allowed as intermediate
Note that $R^{(0)}=A$ (adjacency matrix), $R^{(n)}=I^{\prime}$ (transitive closure)

	$R^{(2)}$		
0	0	1	0
1	0	1	1
0	0	0	0
1	1	1	1

	$R^{(3)}$				$R^{(4)}$		
0	0	1	0	0	0	1	0
1	0	1	1	1	$\mathbf{1}$	1	1
0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1

Warshall's Algorithm (recurrence)

On the k th iteration, the algorithm determines for every pair of vertices i, j if a path exists from i and j with $j u s t$ vertices $1, \ldots, k$ allowed as intermediate

(path using just 1 , ,..., 㑑1)
$R^{(k-1)}[i, k]$ and $R^{(k-1)}[k, j]$ (path from i to k and from k to i using just 1 ,..., h-1)

Warshall's Algorithm (matrix generation)

Recurrence relating elements $R^{(t)}$ to elements of $R^{(t-1)}$ is:

$$
R^{(k)}[i, j]=R^{(k-1)}\left[[i, j] \text { or }\left(R^{(k-1)}[i, k] \text { and } R^{(k-1)}[k, j]\right)\right.
$$

It implies the following rules for generating $R^{(t)}$ from $R^{\left(t_{1-1}\right)}$:

Rule 1 If an element in row i and column j is 1 in $R^{(h-1)}$, it remains 1 in $R^{(k)}$

Ruile 2 If an element in row i and column j is 0 in $R^{(t h-1)}$, it has to be changed to 1 in $R^{(t)}$ if and only if the element in its row i and column k and the element in its column j and row k are both 1 's in $R^{(k-1)}$

Warshall's Algorithm (example)

$$
\left.R^{(0)}=\begin{array}{|l|lll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array} \quad R^{(1)}=\begin{array}{|llll}
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array} \right\rvert\,
$$

$$
R^{(2)}=\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1
\end{array} \quad R^{(3)}=\begin{array}{lll}
\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array} \\
\begin{array}{lllll}
1 & 1 & 1 & 1
\end{array}
\end{array} \quad R^{(4)}=\begin{array}{llll}
\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array} \\
\hline
\end{array}
$$

Warshall's Algorithm (pseudocode and analysis)

ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure //Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
$R^{(0)} \leftarrow A$
for $k \leftarrow 1$ to n do

$$
\text { for } i \leftarrow 1 \text { to } n \text { do }
$$

for $j \leftarrow 1$ to n do
$R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j]$ or $\left(R^{(k-1)}[i, k]\right.$ and $\left.R^{(k-1)}[k, j]\right)$
return $R^{(n)}$

Time efficiency: $\Theta\left(x^{3}\right)$
Space efficiency: Mratrices can be written over their predecessors

Floyd's Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between every pair of vertices

Same idea: construct solution through series of matrices $D^{(0)}$, $D^{(n)}$ using increasing subsets of the vertices allowed as intermediate

Example:

On the k thiteration, the algorithm determines shortest pathis between every pair of vertices i, j that use only vertices among $1, \ldots, k$ as intermediate

$$
D^{(k)}[i, j]=\min \left\{D^{(k-1)}[i, j], D^{(k-1)}\left[[i, k]+D^{(k-1)}[(t, j]\}\right.\right.
$$

Eloyd's Algorithm (example)

$$
\left.D^{(0)}=\begin{array}{|l|lll}
0 & \infty & 3 & \infty \\
2 & 0 & \infty & \infty \\
\infty & 7 & 0 & 1 \\
6 & \infty & \infty & 0
\end{array} \quad D^{(1)}=\begin{array}{|l|l|l|}
\hline 0 & \infty & 3 \\
2 & 0 & \infty \\
\hline & \infty & \infty \\
\hline 6 & \infty & 9
\end{array} \right\rvert\,
$$

Floyd's Algorithm (pseudocode and analysis)

ALGORITHM Floyd(W[1..n, 1..n])

//Implements Floyd's algorithm for the all-pairs shortest-paths problem //Input: The weight matrix W of a graph with no negative-length cycle //Output: The distance matrix of the shortest paths' lengths
$D \leftarrow W / /$ is not necessary if W can be overwritten
for $k \leftarrow 1$ to n do
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do

$$
D[i, j] \leftarrow \min \{D[i, j], D[i, k]+D[k, j]\}
$$

return D

Time efficiency: $\Theta\left(n^{3}\right)$
Space efficiency: Matrices can be written over their predecessors
Nute: Shortest paths themselves can be found, too

Optimal Binary Search Trees

Problem: Given n keys $a_{1}<\ldots<a_{n}$ and probabilities $p_{1} \leq \ldots \leq p_{n}$ searching for them, find a BST with a minimum average number of comparisons in successful search.

Since total number of BSTS with n nodes is given by $\mathrm{C}(2 n, n)$) $(x+1)$, which grows exponentially, brute force is hopeless.

Example: What is an optimal BST for keys A, B, C, and D with search probabilities $0.1,0.2,0.4$, and 0.3 , respectively?

DP for Optimal BST Problem

Let $C[i, j]$ be minimum average number of comparisons made in $T[i, j]$, optimal BST for keys $a_{i}<\ldots<a_{j}$, where $1 \leq i \leq j \leq \boldsymbol{n}$ Consider optimal BST among all BSTs with some $a_{k}(i \leq k \leq j)$ as their root; $T[i, j]$ is the best among them.

$$
\begin{aligned}
& C[i, j]= \\
& \min _{i \leq k \leq j}\left\{p_{k} \cdot 1+\right. \\
& \quad \sum_{s=1}^{k-1} p_{s}\left(\text { level } a_{s} \text { in } T[i, k-1]+1\right)+ \\
& \quad j \\
& \left.\sum_{s=1} p_{i+1}\left(\text { level } a_{s} \text { in } T[k+1, j]+1\right)\right\}
\end{aligned}
$$

DP for Optimal BST Problem (cont.)

After simplifications, we obtain the recurrence for $C[i, j]$: $C[i, j]=\min _{i \leq k \leq j}\{C[i, k-1]+C[k+1, j]\}+\sum_{s=i}^{j} p_{s}$ for $1 \leq i \leq j \leq n$ $C[i, i]=p_{i}$ for $1 \leq i \leq j \leq n$

Example: lsey
 probeibility $0,10.20 . \leq 10.3$

The tables below are filled diagonal by diagonal: the left one is filled using the recurrence

$$
C[i, j]=\min _{i \leq k \leq j}\{C[i, k-1]+C[i k+1, j]\}+\sum_{s=i}^{j} p_{s}, C[i, j]=p_{i} ;
$$

the right one, for trees' roots, records k s values giving the minima

i^{j}	0	1	2	3	4
1	0	.1	.4	1.1	1.7
2		0	.2	.8	1.4
3			0	.4	1.0
4				0	.3
5					0

i^{j}	0	1	2	3	4
1		1	2	3	3
2			2	3	3
3				3	3
4					4
5					

optimal BSI

Optimal Binary Search Trees

ALGORITHM OptimalBST($P[1 . . n]$)

//Finds an optimal binary search tree by dynamic programming $/ /$ Input: Λn array $P[1 . . n]$ of search probabilities for a sorted list of n keys //Output: Average number of comparisons in successful searches in the // optimal BST and table R of subtrees' roots in the optimal BST for $i \leftarrow 1$ to n do $C[i, i-1] \leftarrow 0$ $C[i, i] \leftarrow P[i]$ $R[i, i] \leftarrow i$
$C[n+1, n] \leftarrow 0$ for $d \leftarrow 1$ to $n-1$ do //diagonal count
for $i<1$ to $n-d$ do
$j \leftarrow i+d$
minval $\leftarrow \infty$
for $k \leftarrow i$ to j do if $C[i, k-1]+C[k+1, j]<$ minval minval $\leftarrow C[i, k-1]+C[k+1, j] ; k \min \leftarrow k$
$R[i, j] \leftarrow k m i n$
sum $\leftarrow P[i]$; for $s \leftarrow i+1$ to j do sum \leftarrow sum $+P[s]$
$C[i, j] \leftarrow$ minval + sum
return $C[1, n], R$

Analysis DP for Optimal BST Problem

Time efficiency: ©(n^{3}) but can be reduced to $\Theta\left(n^{2}\right)$ by taking advantage of monotonicity of entries in the root table, i.e, $R[i, j]$ is always in the range between $R[i, j-1]$ and $R[i+1, j]$

Space efficiency: ©(n^{2})

Method can be expended to include unsuccessful searches

