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Transform and ConquerTransform and Conquer

This group of techniques solves a problem by a This group of techniques solves a problem by a transformationtransformation

 to a simpler/more convenient instance of the same  problem to a simpler/more convenient instance of the same  problem 
((instance simplificationinstance simplification) ) 

 to a different representation of the same instance to a different representation of the same instance 
((representation changerepresentation change))

 to a different problem for which an algorithm is already to a different problem for which an algorithm is already 
available (available (problem reductionproblem reduction) ) 
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Instance simplification - PresortingInstance simplification - Presorting

Solve a problem’s instance  by transforming it intoSolve a problem’s instance  by transforming it into
another simpler/easier instance of the same problemanother simpler/easier instance of the same problem

PresortingPresorting

Many problems involving lists are easier when list is sorted.Many problems involving lists are easier when list is sorted.
 searching searching 
 computing the median (selection problem)computing the median (selection problem)
 checking if all elements  are distinct (element uniqueness)checking if all elements  are distinct (element uniqueness)

Also: Also: 
 Topological sorting helps solving some problems for dags.Topological sorting helps solving some problems for dags.
 Presorting is used in many geometric algorithms.Presorting is used in many geometric algorithms.
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How fast can we sort ?How fast can we sort ?

Efficiency of algorithms involving sorting depends onEfficiency of algorithms involving sorting depends on

efficiency of sorting.efficiency of sorting.

TheoremTheorem (see Sec. 11.2):   (see Sec. 11.2):  loglog2 2 nn!!  ≈≈  n n loglog2 2 n  n  comparisons are comparisons are 

necessary in the worst case to sort a list of size necessary in the worst case to sort a list of size nn by  by anyany  
comparison-based algorithm.comparison-based algorithm.

Note: About Note: About nnloglog2 2 nn comparisons are also sufficient to sort array  comparisons are also sufficient to sort array 
of size of size n n (by mergesort).(by mergesort).



6-5Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 6

Searching with presortingSearching with presorting

Problem: Search for a given Problem: Search for a given KK in A[0.. in A[0..nn-1]-1]  

Presorting-based algorithm:Presorting-based algorithm:

Stage 1  Sort the array by an efficient sorting algorithmStage 1  Sort the array by an efficient sorting algorithm

        Stage 2  Apply binary search Stage 2  Apply binary search 

Efficiency: Efficiency: ΘΘ((nnlog log nn) + O(log ) + O(log nn) = ) = ΘΘ((nnlog log nn) ) 

Good or bad?Good or bad?

Why do we have our dictionaries, telephone directories, etc. Why do we have our dictionaries, telephone directories, etc. 
sorted?sorted?
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Element Uniqueness with presortingElement Uniqueness with presorting

 Presorting-basedPresorting-based algorithm algorithm
  Stage 1: sort by efficient sorting algorithm (e.g. mergesort)Stage 1: sort by efficient sorting algorithm (e.g. mergesort)

  Stage 2: scan array to check pairs of Stage 2: scan array to check pairs of adjacentadjacent elements elements

  EfficiencyEfficiency: : ΘΘ((nnlog log nn) + O() + O(nn) = ) = ΘΘ((nnlog log nn))  

 Brute force algorithm Brute force algorithm 
  Compare all pairs of elements  Compare all pairs of elements

  Efficiency: O(  Efficiency: O(nn22))  

 Another algorithm?  HashingAnother algorithm?  Hashing
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Instance simplification Instance simplification – Gaussian Elimination– Gaussian Elimination

Given: A system of Given: A system of nn linear equations in  linear equations in n n unknowns with an arbitrary unknowns with an arbitrary 
coefficient matrix.coefficient matrix.

Transform to: An equivalent system of Transform to: An equivalent system of nn linear equations in  linear equations in n n unknowns unknowns 
with an upper triangular coefficient matrix.with an upper triangular coefficient matrix.
  
Solve the latter by substitutions starting with the last equation  and Solve the latter by substitutions starting with the last equation  and 
moving up to the first one.moving up to the first one.

aa1111xx1 1 + + aa1212xx2 2 + …  + + …  + aa11nnxxnn = =  b  b1               1                 aa1,11,1xx11+ + aa1212xx2 2 + …  + + …  + aa11nnxxnn = = b b11  

aa2121xx11 +  + aa2222xx2 2 + …  + + …  + aa22nnxxnn = =  b  b2                  2                                        aa2222xx2 2 + …  + + …  + aa22nnxxnn = = b b22

                          

aann11xx11 +  + aann22xx2  2  + …   + + …   + aannnnxxnn = = b bnn                               aannnnxxnn = = b bnn  
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Gaussian Elimination (cont.)Gaussian Elimination (cont.)

The transformation is accomplished by a sequence of elementary The transformation is accomplished by a sequence of elementary 
operations on the system’s coefficient matrix  (which don’t operations on the system’s coefficient matrix  (which don’t 
change the system’s solution):change the system’s solution):

  forfor  i i ←←1 to 1 to n-n-1 1 dodo
              replace each of the subsequent rows (i.e., rows replace each of the subsequent rows (i.e., rows ii+1, …, +1, …, nn) by ) by 
       a  difference between that row and an appropriate multiple        a  difference between that row and an appropriate multiple 
       of the        of the i-i-th row to make the new coefficient in the th row to make the new coefficient in the i-i-thth  column column 

       of that row 0       of that row 0
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Example of Gaussian EliminationExample of Gaussian Elimination

Solve        2Solve        2xx11 - 4 - 4xx2 2  +  + xx3 3 =   6  =   6                  
                 3                 3xx11 -    -   xx2    2    + + xx3 3 = 11= 11
                                      xx11 +   +  xx2    2    -  -  xx3 3 = -3= -3   

Gaussian eliminationGaussian elimination
    22   -4 -4     1   6                                      2  1   6                                      2   -4 -4       1    1      6    6 

    3  -1   1  11  row2 – (3/2)*row1    0   5  -1/2   2 3  -1   1  11  row2 – (3/2)*row1    0   5  -1/2   2 
    1   1  -1 1   1  -1   -3  row3 – (1/2)*row1     0   3  -3/2  -6  row3–(3/5)*row2-3  row3 – (1/2)*row1     0   3  -3/2  -6  row3–(3/5)*row2    

                                                                                                                                            22   -4 -4       1    1       6    6

                                                                                                                    0   5  -1/2    20   5  -1/2    2
                                                                                                                    0   0  -6/5 -36/50   0  -6/5 -36/5
  Backward substitutionBackward substitution
                                                                                                                    xx33 = (-36/5) / (-6/5) = 6 = (-36/5) / (-6/5) = 6

                                                                                                                    xx22 = (2+(1/2)*6) / 5 = 1 = (2+(1/2)*6) / 5 = 1

                                                                                                                    xx11 = (6 – 6 + 4*1)/2 = 2 = (6 – 6 + 4*1)/2 = 2
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Pseudocode and Efficiency of Gaussian EliminationPseudocode and Efficiency of Gaussian Elimination

Stage 1: Reduction to the upper-triangular matrixStage 1: Reduction to the upper-triangular matrix

forfor  i i ←← 1  1 toto  n-n-1 1 dodo

          forfor  j j ←←  ii+1 +1 toto  n n dodo
          for          for  k k ←←  i i toto  n+n+1 1 dodo

    A    A[[jj,, k k] ] ←←  AA[[jj,, k k] - ] - AA[[ii,, k k]] * A * A[[jj,, i i] / ] / AA[[ii,, i i]  //improve!]  //improve!

Stage 2: Backward substitutionStage 2: Backward substitution
forfor  j j ←←  nn downto downto 1  1 dodo

            tt  ←← 0 0

            forfor  k k ←← j  j +1+1  toto  n n dodo

                        tt  ←←  tt +  + AA[[jj,, k k] * ] * xx[[kk] ] 
            xx[[jj] ] ←← ( (AA[[jj,, n n+1] - +1] - tt) / ) / AA[[jj,, j j] ] 

  
Efficiency: Efficiency: ΘΘ((nn33)) +  + ΘΘ((nn22)) =  = ΘΘ((nn33))  
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Searching ProblemSearching Problem

ProblemProblem: Given a (multi)set : Given a (multi)set S S of keys  and a search  of keys  and a search  
             key              key KK, find an occurrence of , find an occurrence of KK in  in SS, if any, if any

 Searching must be considered in the context of:Searching must be considered in the context of:

• file size (internal vs. external)file size (internal vs. external)

• dynamics of data (static vs. dynamic)dynamics of data (static vs. dynamic)

 Dictionary operations (dynamic data):Dictionary operations (dynamic data):

• find (search)find (search)

• insertinsert

• deletedelete
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Taxonomy of Searching AlgorithmsTaxonomy of Searching Algorithms

 List searchingList searching
• sequential searchsequential search
• binary searchbinary search
• interpolation searchinterpolation search

 Tree searching Tree searching 
• binary search treebinary search tree
• binary balanced trees: AVL trees, red-black treesbinary balanced trees: AVL trees, red-black trees
• multiway balanced trees: 2-3 trees, 2-3-4 trees, B treesmultiway balanced trees: 2-3 trees, 2-3-4 trees, B trees

 HashingHashing
• open hashing (separate chaining)open hashing (separate chaining)
• closed hashing (open addressing)closed hashing (open addressing)
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Binary Search TreeBinary Search Tree

Arrange keys in a binary tree with the Arrange keys in a binary tree with the binary search binary search 
tree  propertytree  property::

K

<K >K

Example: 5, 3, 1, 10, 12, 7, 9Example: 5, 3, 1, 10, 12, 7, 9



6-14Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 6

Dictionary Operations on Binary Search TreesDictionary Operations on Binary Search Trees

Searching – straightforwardSearching – straightforward
Insertion – search for key, insert at leaf where search terminatedInsertion – search for key, insert at leaf where search terminated
Deletion – 3 cases:Deletion – 3 cases:

deleting key at a leafdeleting key at a leaf
deleting key at node with single childdeleting key at node with single child
deleting key at node with two childrendeleting key at node with two children

  Efficiency depends of the tree’s height: Efficiency depends of the tree’s height: loglog2 2 nn    ≤≤    hh    ≤≤    nn-1,-1,
  with height  average (random files) be about 3with height  average (random files) be about 3loglog2 2 nn

  Thus all three operations haveThus all three operations have
•    worst case efficiency: worst case efficiency: ΘΘ((nn) ) 
•    average case efficiency: average case efficiency: ΘΘ(log (log nn) ) 

  BonusBonus: inorder traversal produces sorted list: inorder traversal produces sorted list
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Balanced Search Trees Balanced Search Trees 

Attractiveness of Attractiveness of binary search tree binary search tree is marred by the bad (linear) is marred by the bad (linear) 
worst-case efficiency.  Two ideas to overcome it are:worst-case efficiency.  Two ideas to overcome it are:

    to rebalance binary search tree when a new insertionto rebalance binary search tree when a new insertion
    makes the tree “too unbalanced”    makes the tree “too unbalanced”

•   AVL treesAVL trees

•   red-black treesred-black trees

      to allow more than one key per node of a search treeto allow more than one key per node of a search tree

•   2-3 trees2-3 trees

•   2-3-4 trees2-3-4 trees

•   B-treesB-trees
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Balanced trees:  AVL treesBalanced trees:  AVL trees

DefinitionDefinition   An    An AVL treeAVL tree is a binary search tree in which, for  is a binary search tree in which, for 
every node, the difference between the heights of its left and every node, the difference between the heights of its left and 
right subtrees, called the right subtrees, called the balance factorbalance factor, is at most 1 (with , is at most 1 (with 
the height of an empty tree defined as -1)the height of an empty tree defined as -1)
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RotationsRotations

If a key insertion violates the balance requirement at some If a key insertion violates the balance requirement at some 
node, the subtree rooted at that node is transformed via one of node, the subtree rooted at that node is transformed via one of 
the four the four rotations.  rotations.  (The rotation is always performed for a (The rotation is always performed for a 
subtree rooted at an “unbalanced” node closest to the new leaf.)subtree rooted at an “unbalanced” node closest to the new leaf.)
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General case: Single R-rotationGeneral case: Single R-rotation
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General case: Double LR-rotationGeneral case: Double LR-rotation
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AVL tree construction - an exampleAVL tree construction - an example

Construct an AVL tree for the list  5, 6, 8, 3, 2, 4, 7 Construct an AVL tree for the list  5, 6, 8, 3, 2, 4, 7 
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AVL tree construction - an example (cont.)AVL tree construction - an example (cont.)
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Analysis of AVL treesAnalysis of AVL trees

 hh     ≤ ≤  1.4404   1.4404 loglog22 ( (n n + 2)  - 1.3277                                + 2)  - 1.3277                                

        average height: 1.01 average height: 1.01 loglog22n n +  +  0.1 for large 0.1 for large n n (found empirically)(found empirically)

 Search and insertion are O(Search and insertion are O(log log nn) ) 

 Deletion is more complicated but is also O(Deletion is more complicated but is also O(log log nn))

 Disadvantages: Disadvantages: 
• frequent rotationsfrequent rotations
• complexitycomplexity

 A similar idea: A similar idea: red-black treesred-black trees (height of subtrees is allowed to  (height of subtrees is allowed to 
differ by up to a factor of 2) differ by up to a factor of 2) 
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Multiway Search TreesMultiway Search Trees

DefinitionDefinition   A    A multiway search treemultiway search tree is a search tree that allows is a search tree that allows
more than one key in the same node of the tree.more than one key in the same node of the tree.

DefinitionDefinition   A node of a search tree is called an    A node of a search tree is called an nn--nodenode if it contains  if it contains n-n-1 1 
ordered keys (which divide the entire key range into ordered keys (which divide the entire key range into nn intervals pointed  intervals pointed 
to by the node’s to by the node’s  n  n links to its children):links to its children):

                                                                                                                                                                                                      

  
Note: Every node in a classical binary search tree is a 2-nodeNote: Every node in a classical binary search tree is a 2-node

    

k1  <  k2  < … <  kn-1

< k1 [k1, k2 ) ≥ kn-1
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2-3 Tree 2-3 Tree 

DefinitionDefinition   A    A 2-3 tree2-3 tree is a search tree that is a search tree that
    may have 2-nodes and 3-nodesmay have 2-nodes and 3-nodes
    height-balanced (all leaves are on the same level)height-balanced (all leaves are on the same level)

A 2-3 tree is constructed by successive insertions of keys given, with a A 2-3 tree is constructed by successive insertions of keys given, with a 
new key always inserted into a leaf of the tree.  If the leaf is a 3-node, new key always inserted into a leaf of the tree.  If the leaf is a 3-node, 
it’s split into two with the middle key promoted to the parent.it’s split into two with the middle key promoted to the parent.  

K K  ,  K1 2

(K  , K  )
1 2

2-node 3-node

<  K >  K< K > K 1 2
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2-3 tree construction – an example2-3 tree construction – an example

Construct a 2-3 tree the list  9, 5, 8, 3, 2, 4, 7Construct a 2-3 tree the list  9, 5, 8, 3, 2, 4, 7  
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Analysis of 2-3 treesAnalysis of 2-3 trees

 loglog3 3 ((n n + 1) - 1 + 1) - 1 ≤≤  hh     ≤ ≤    loglog22 ( (n n + 1)  - 1+ 1)  - 1

 Search, insertion, and deletion are in Search, insertion, and deletion are in ΘΘ((log log nn) ) 

 The idea of 2-3 tree can be generalized by allowing more The idea of 2-3 tree can be generalized by allowing more 
keys per node keys per node 

• 2-3-4 trees 2-3-4 trees 

• B-treesB-trees
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Heaps and HeapsortHeaps and Heapsort

DefinitionDefinition    A A heapheap is a binary tree with keys at its nodes (one  is a binary tree with keys at its nodes (one 
key per node) such that:key per node) such that:

 It is essentially complete, i.e., all its levels are full except It is essentially complete, i.e., all its levels are full except 
possibly the last level, where only some rightmost keys may possibly the last level, where only some rightmost keys may 
be missingbe missing

 The key at each node is The key at each node is ≥≥ keys at its children keys at its children
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Illustration of the heap’s definitionIllustration of the heap’s definition
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a heapa heap not a heapnot a heap not a heapnot a heap

Note: Heap’s elements are ordered top down (along any path  Note: Heap’s elements are ordered top down (along any path  
              down from its root), but they are not ordered left to right              down from its root), but they are not ordered left to right
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Some Important Properties of a Some Important Properties of a 
HeapHeap

 Given Given n,n, there exists a unique binary tree with  there exists a unique binary tree with nn nodes that nodes that

          is essentially complete, with is essentially complete, with h h = = loglog2 2 nn

 The root contains the largest keyThe root contains the largest key

 The subtree rooted at any node of a heap is also a heapThe subtree rooted at any node of a heap is also a heap

 A heap can be represented as an arrayA heap can be represented as an array
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Heap’s Array RepresentationHeap’s Array Representation

Store heap’s elements in an array (whose elements indexed, Store heap’s elements in an array (whose elements indexed, 
for convenience, 1 to for convenience, 1 to nn) in top-down left-to-right order) in top-down left-to-right order

Example:Example:

 Left child of node Left child of node jj is at 2 is at 2jj
 Right child of node Right child of node jj is at 2 is at 2jj+1+1
 Parent of node Parent of node jj is at  is at jj/2/2  

 Parental nodes are represented in the first Parental nodes are represented in the first nn/2/2    locationslocations

9

1

5 3

4 2

1   2   3   4   5   6

9   5   3   1   4   2
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Step 0: Initialize the structure with keys in the order givenStep 0: Initialize the structure with keys in the order given

Step 1: Starting with the last (rightmost) parental node, fix the Step 1: Starting with the last (rightmost) parental node, fix the 
heap rooted at it, if it doesn’t satisfy the heap heap rooted at it, if it doesn’t satisfy the heap 
condition: keep exchanging  it with its largest child condition: keep exchanging  it with its largest child 

until the heapuntil the heap  condition holdscondition holds

Step 2: Repeat Step 1 for the preceding parental nodeStep 2: Repeat Step 1 for the preceding parental node

Heap Construction (bottom-up)Heap Construction (bottom-up)
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Example of Heap ConstructionExample of Heap Construction
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Construct a heap for the list 2, 9, 7, 6, 5, 8Construct a heap for the list 2, 9, 7, 6, 5, 8
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Pseudopodia of bottom-up heap constructionPseudopodia of bottom-up heap construction
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Stage 1: Construct a heap for a given list of Stage 1: Construct a heap for a given list of nn keys keys

Stage 2: Repeat operation of root removal Stage 2: Repeat operation of root removal nn-1 times:-1 times:

– Exchange keys in the root and in the last Exchange keys in the root and in the last 
(rightmost) leaf(rightmost) leaf

– Decrease heap size by 1Decrease heap size by 1

– If necessary,  swap new root with larger child until If necessary,  swap new root with larger child until 
the heap condition holdsthe heap condition holds

HeapsortHeapsort
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Sort the list  2,  9,  7,  6,  5,  8  by heapsortSort the list  2,  9,  7,  6,  5,  8  by heapsort

Stage 1 (heap construction)Stage 1 (heap construction)  Stage 2 (root/max removal) Stage 2 (root/max removal)

          1   9   1   9   77   6   5   8   6   5   8               99   6   8   2   5   7   6   8   2   5   7

          2   2   99   8   6   5   7   8   6   5   7        7   6   8   2   5 | 9       7   6   8   2   5 | 9

          22   9   8   6   5   7   9   8   6   5   7               88   6   7   2   5 | 9   6   7   2   5 | 9

          9   9   22   8   6   5   7   8   6   5   7        5   6   7   2 | 8   9       5   6   7   2 | 8   9

          9   6   8   2   5   79   6   8   2   5   7               77   6   5   2 | 8   9   6   5   2 | 8   9

              2   6   5 | 7   8   92   6   5 | 7   8   9

              66   2   5 | 7   8   9   2   5 | 7   8   9

              55   2 | 6   7   8   9   2 | 6   7   8   9

              55   2 | 6   7   8   9   2 | 6   7   8   9

              2 | 5   6   7   8   92 | 5   6   7   8   9

Example of Sorting by HeapsortExample of Sorting by Heapsort
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Stage 1: Build heap for a given list of Stage 1: Build heap for a given list of nn keys keys

worst-caseworst-case
                  CC((nn) =  ) =  

Stage 2: Repeat operation of root removal Stage 2: Repeat operation of root removal nn-1 times (fix heap)-1 times (fix heap)

worst-caseworst-case

                  CC((nn) =  ) =  

Both worst-case and average-case efficiency: Both worst-case and average-case efficiency: ΘΘ((nnloglognn) ) 
In-place: yesIn-place: yes
Stability: no (e.g., 1  1)Stability: no (e.g., 1  1)

ΣΣ 2(2(h-ih-i) 2) 2i       i       =   =   2 ( 2 ( nn – log – log22((n n + 1))  + 1))  ∈∈  ΘΘ((nn))
ii=0=0

hh-1-1

# nodes at 
level i

ΣΣ
i=i=11

nn-1-1

  2log2log2 2 i i ∈∈  ΘΘ((nnloglognn)) 

Analysis of HeapsortAnalysis of Heapsort
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A A priority queue priority queue  is the ADT of a set of elements with  is the ADT of a set of elements with 

numerical priorities with the following operations:numerical priorities with the following operations:

• find element with highest priorityfind element with highest priority

• delete element with highest prioritydelete element with highest priority

• insert element with assigned priority (see below)insert element with assigned priority (see below)

 Heap is a very efficient way for implementing priority queuesHeap is a very efficient way for implementing priority queues

 Two ways to handle priority queue in whichTwo ways to handle priority queue in which
 highest priority = smallest number highest priority = smallest number

Priority QueuePriority Queue
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Insertion of a New Element into a HeapInsertion of a New Element into a Heap

 Insert the new element at last position in heap. Insert the new element at last position in heap. 
 Compare it with its parent and, if it violates heap condition,Compare it with its parent and, if it violates heap condition,

exchange themexchange them
 Continue comparing the new element with nodes up the tree Continue comparing the new element with nodes up the tree 

until the heap condition is satisfieduntil the heap condition is satisfied

Example:Example:    Insert key 10Insert key 10

Efficiency: O(log Efficiency: O(log nn))

9
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2 5
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Horner’s Rule For Polynomial EvaluationHorner’s Rule For Polynomial Evaluation

Given a polynomial of degree Given a polynomial of degree nn
pp((xx) = ) = aannxxnn + a + ann-1-1xxnn-1-1 + … +  + … + aa11xx +  + aa00

and a specific value of and a specific value of xx, find the value of , find the value of pp at that point. at that point.

Two brute-force algorithms:Two brute-force algorithms:

pp  ←← 0 0                   pp  ←←    aa00;   ;   powerpower  ←← 1 1

for for i i ←←  nn  downto 0downto 0  dodo          for          for i i ←← 1 to  1 to n n dodo

            power power ←←  1 1     powerpower  ←←  powerpower *  * xx

            for for jj  ←← 1 to  1 to ii  do do     pp  ←←  pp +  + aai i * * powerpower

            powerpower  ←←  powerpower *  * x      x                                  return                             return pp

                    pp  ←←  p + ap + aii   * * powerpower

return return pp
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Horner’s RuleHorner’s Rule

              Example: Example: pp(x) = 2(x) = 2xx44 -  - xx33 + 3 + 3xx22 +  + xx - 5 = - 5 =

                                                                = = xx(2(2xx33 -  - xx22 + 3 + 3xx + 1) - 5 =  + 1) - 5 = 

                = = xx((xx(2(2xx22 -  - xx + 3) + 1) - 5 = + 3) + 1) - 5 =

                = = xx((xx((xx(2(2xx - 1) + 3) + 1) - 5 - 1) + 3) + 1) - 5

              Substitution into the last formula leads to a faster algorithm Substitution into the last formula leads to a faster algorithm 

              Same sequence of computations are obtained by simply Same sequence of computations are obtained by simply 
       arranging the coefficient in a table and proceeding as follows:       arranging the coefficient in a table and proceeding as follows:

coefficientscoefficients 22 -1-1  3 3  1 1 -5-5

                                      xx=3=3
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Horner’s Rule pseudocodeHorner’s Rule pseudocode

Efficiency of Horner’s Rule: # multiplications = # additions = Efficiency of Horner’s Rule: # multiplications = # additions = nn    

SSynthetic divisionynthetic division of of  of of pp((xx) by () by (x-xx-x00) ) 
Example: Let Example: Let pp((xx) = 2) = 2xx44 -  - xx33 + 3 + 3xx22 + +  x x - 5.  Find  - 5.  Find pp((xx):():(xx-3)-3)  
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Computing  Computing  aann  (revisited)  (revisited)

Left-to-right binary exponentiationLeft-to-right binary exponentiation  
Initialize product accumulatorInitialize product accumulator   by 1.by 1.
Scan Scan nn’s binary expansion from left to right and do the ’s binary expansion from left to right and do the 
following: following: 

If the current binary digit is 0, square the accumulator (S);If the current binary digit is 0, square the accumulator (S);
if the binary digit is 1, square the accumulator and multiply it if the binary digit is 1, square the accumulator and multiply it 
by by a a (SM).(SM).

Example:   Compute aExample:   Compute a1313.   Here, .   Here, nn = 13 = 1101 = 13 = 110122. . 
binary rep. of 13:              1             1binary rep. of 13:              1             1      0                1     0                1

      SM         SM       SM         SM      S      S          SM          SM 
accumulator:   1           1accumulator:   1           122**a=aa=a        aa22**aa =  = aa33  (  (aa33))22 =  = aa66  (  (aa66))22**aa= = aa13 13     
(computed left-to-right)(computed left-to-right)

Efficiency:  (Efficiency:  (b-b-1) 1) ≤≤  M(  M(nn) ) ≤≤ 2 2((b-b-1)  where 1)  where b = b = loglog2 2 nn + 1 + 1
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Computing  Computing  aann  (cont.)  (cont.)

Right-to-left binary exponentiationRight-to-left binary exponentiation  

Scan Scan nn’s binary expansion from right to left and compute ’s binary expansion from right to left and compute aann as  as 

the product of terms the product of terms aa2 2 ii corresponding to 1’s in this expansion.  corresponding to 1’s in this expansion. 

ExampleExample  Compute   Compute aa13 13 by the right-to-left binary exponentiation.  by the right-to-left binary exponentiation.  
Here, Here, nn = 13 = 1101 = 13 = 110122.  .  

11       1      1            0                1           0                1

                     a           a88      a     a44           a          a22       a             a        :     :     aa2 2 ii terms  terms 
                             a                 a88     *        a     *        a44   *                         a  *                         a        :     product         :     product 

     (computed right-to-left)     (computed right-to-left)

Efficiency: same as that of left-to-right binary exponentiationEfficiency: same as that of left-to-right binary exponentiation   
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Problem ReductionProblem Reduction

This variation of transform-and-conquer solves a problem by This variation of transform-and-conquer solves a problem by 
a transforming it into different problem for which an a transforming it into different problem for which an 
algorithm is already available.algorithm is already available.

To be of practical value, the combined time of the To be of practical value, the combined time of the 
transformation and solving the other problem should be transformation and solving the other problem should be 
smaller than solving the problem as given by another smaller than solving the problem as given by another 
method. method. 
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Examples of Solving Problems by ReductionExamples of Solving Problems by Reduction

 computing lcm(computing lcm(mm, , nn) via computing gcd() via computing gcd(m, nm, n))

 counting number of paths of length counting number of paths of length n n in a graph by raising in a graph by raising 
the graph’s adjacency matrix to the the graph’s adjacency matrix to the n-n-th powerth power

 transforming a maximization problem to a minimization transforming a maximization problem to a minimization 
problem and vice versa (also, min-heap construction)problem and vice versa (also, min-heap construction)

 linear programminglinear programming

 reduction to graph problems (e.g., solving puzzles via state-reduction to graph problems (e.g., solving puzzles via state-
space graphs) space graphs) 


