Chapter 6

Transform-and-Conquer

introduction to The Design \&

Transform and Conquer

This group of techniques solves a problem by a transformution

- to a simpler/more convenient instance of the same problem (instance simplificution)
to a different representation of the same instance (representation change)
- to a different problem for which an algorithm is already available (problem reduction)

Instance simplification - Presorting

Solve a problem's instance by transforming it into another simpler/easier instance of the same problem

Presorting

Many problems involving lists are easier when list is sorted.
o searching

- computing the median (selection problem)
checking if all elements are distinct (element uniqueness)

Also:
Topological sorting helps solving some problems for dags.
. Presorting is used in many geometric algorithms.

How fast can we sort?

Efficiency of algorithms involving sorting depends on efficiency of sorting.

Theorem (see Sec, 11.2): $\left\lceil\log _{2} n!\right\rceil \approx n \log _{2} n$ comparisons are necessary in the worst case to sort a list of size n by any comparison-based algorithm.

Note: About $n \log _{2} n$ comparisons are also sufficient to sort array of size n (by mergesort).

Searching with presorting

Problem: Search for a given \mathbb{K} in A[0.n-1]

Presorting-based algorithm:
Stage 1 Sort the array by an efficient sorting algorithm Stage 2 Apply binary search

Efficiency: $\Theta(n \log n)+O(\log n)=\Theta(n \log n)$

Good or badp
Why do we have our dictionaries, telephone directories, etc. sorted?

Element Uniqueness with presorting

Presorting-based algorithm
Stage 1: sort by efficient sorting algorithm (e.g. mergesort)
Stage 2: scan array to check pairs of adjacent elements

Efficiency: $\Theta(n \log n)+O(n)=\Theta(n \log n)$
Brute force algorithm
Compare all pairs of elements
Efficiency: $O\left(x^{2}\right)$

Another algorithm? Hashing

Instance simplification - Gaussian Elimination

Given: A system of n linear equations in n unknowns with an arbitrary coefficient matrix.

Transform to: An equivalent system of n linear equations in n unknowns with an upper triangular coefficient matrix.

Solve the latter by substitutions starting with the last equation and moving up to the first one.
$a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2}$

$$
\begin{array}{r}
a_{1,1} x_{1}+a_{12} x_{2}+\ldots+a_{1 \pi} x_{n}=b_{1} \\
a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2}
\end{array}
$$

$a_{n \mid} x_{1}+a_{n 2} x_{2}+\ldots+a_{n u} x_{n}=b_{n}$

Gaussian Ellimination (cont.)

The transformation is accomplished by a sequence of elementary operations on the system's coefficient matrix (which don't change the system's solution):
for $i \Leftarrow 1$ to $n-1$ do
replace each of the subsequent rows (i.e., rows $i+1, \ldots, n$) by a diffierence between that row and an appropriate multiple of the i-th row to make the new coefficient in the i-th column
of that row 0

Example of Gaussian Elimination

Solve

$$
\begin{aligned}
2 x_{1}-4 x_{2}+x_{3} & =6 \\
3 x_{1}-x_{2}+x_{3} & =11 \\
x_{1}+x_{2}-x_{3} & =-3
\end{aligned}
$$

Gaussian elimination

$$
\begin{array}{ccccccccc}
2 & -4 & 1 & 6 & & 2 & -4 & 1 & 6 \\
3 & -1 & 1 & 11 & \text { row2 - (3/2)* rowl } & 0 & 5 & -1 / 2 & 2 \\
1 & 1 & -1 & -3 & \text { row3 - }(1 / 2)^{*} \text { row1 } & 0 & 3 & -3 / 2 & -6 \\
\text { row3-(3/5)* row2 }
\end{array}
$$

$$
\begin{array}{lllll}
& -4 & 1 & 6 \\
0 & 5 & -1 / 2 & 2 \\
0 & 0 & -6 / 5 & -36 / 5
\end{array}
$$

Backward substitution

$$
\begin{aligned}
& x_{3}=(-36 / 5) /(-6 / 5)=6 \\
& x_{2}=(2+(1 / 2) * 6) / 5=1 \\
& x_{1}=(6-6+4 * 1) / 2=2
\end{aligned}
$$

Pseudocode and Efficiency of Gaussian Elimination

Stage 1: Reduction to the upper-triangular matrix
for $i \leftarrow 1$ to $n-1$ do

$$
\begin{aligned}
& \text { for } j \leftarrow i+1 \text { to } n \text { do } \\
& \quad \text { for } k \leftarrow i \text { to } n+1 \text { do } \\
& \quad A[j, k] \leftarrow A[j, k]-A[i, k] * A[j, i] / A[i, i] / / i m p r o v e!
\end{aligned}
$$

Stage 2: Backward substitution for $j \leftarrow n$ downto 1 do

$$
t \leftarrow 0
$$

for $\boldsymbol{k} \leftarrow j+1$ to \boldsymbol{n} do

$$
\begin{gathered}
t \leftarrow t+A[j, k] * x[k] \\
x[j] \leftarrow(A[j, n+1]-t) / A[j, j]
\end{gathered}
$$

Efficiency: $\Theta\left(n^{3}\right)+\Theta\left(n^{2}\right)=\Theta\left(n^{3}\right)$

Problem: Given a (multii)set S of keys and a search key K, find an occurrence of \mathbb{K} in S, if any

Searching must be considered in the context of:

- file size (internal vs, external)
- dynamics of data (static vs, dynamic)

Dictionary operations (dynamic data):

- find (search)
- insert
- delete

Taxonomy of Searching Algorithms

List searching

- sequential search
- binary search
- interpolation search

Tree searching

- binary search tree
- binary balanced treess AVL trees, red-black trees
- multiway balanced treess 2-3 trees, 2-3-4 trees, B trees
- Hashing
- open hashing (separate chaining)
- closed hashing (open addressing)

Binary Search Tree

Arrange keys in a binary tree with the binary search tree properity:

Example: 5, 3, 1, 10, 12, 7, 9

Dictionary Operations on Binary Search Trees

Searching - straightforward

Insertion - search for key, insert at leaf where search terminated
Deletion - 3 cases:
deleting key at a leaf deleting key at node with single child deleting key at node with two children

Efficiency depends of the tree's height: $\left\lfloor\log _{2} n\right\rfloor \leq h \leq n-1$, with height average (random files) be about $3 \log _{2} n$

Thus all three operations have

- worst case efficiency: $\Theta(n)$
- average case efficiency: $\Theta(\log n)$

Bonus: inorder traversal produces sorted list

Balanced Search Trees

Attractiveness of binary search tree is marred by the bad (linear) worst-case efficiency. Two ideas to overcome it are:

- to rebalance binary search tree when a new insertion makes the tree "too unbalanced"
- AVL trees
- red-black trees
- to allow more than one key per node of a search tree
- 2-3 trees
- 2-3-4 trees
- b-urces

Balanced trees: AVL trees

Definition An AVL uree is a binary search tree in which, for every node, the difference between the heights of its left and right subtrees, called the balance factor, is at most 1 (with the height of an empty tree defined as -1)

Tree (a) is an $A V L$ tree; tree (b) is not an $A V L$ tree

Rotations

If a key insertion violates the balance requirement at some node, the subtree rooted at that node is transformed via one of the four rotations: (The rotation is always performed for a subtree rooted at an "unbalanced" node closest to the new leaf.)

Single R-rotation
Double LR-rotation

General case: Single R-rotation

single R-rotation

General case: Double LR-rotation

double $L R$-rotation

A VL tree construction - an example

Construct an $A V L$ tree for the list $5,6,8,3,2,4,7$

AVL tree construction - an example (cont.)

Analysis of A VL trees

$h \leq 1.4404 \log _{2}(x+2)-1.3277$
average height: $1.01 \log _{2} n+0.1$ for large n (found empirically)
Search and insertion are $O(\log n)$
Deletion is more complicated but is also $\mathrm{O}(\log n)$
Disadvantages:

- frequent rotations
- complexity

A similar idea: red-black trees (height of subtrees is allowed to differ by up to a factor of 2)

Multiway Search Trees

Definition A multiway search tree is a search tree that allows more than one key in the same node of the tree.

Definition A node of a search tree is called an n-node if it contains $n-1$ ordered keys (which divide the entire key range into n intervals pointed to by the node's n links to its children):

$$
k_{1}<k_{2}<\ldots<k_{n-1}
$$

Note: Every node in a classical binary search tree is a 2-node

2-3 Tree

Definition $A 2-3$ uree is a search tree that

- may have 2 -nodes and 3 -nodes
o height-balanced (all leaves are on the same level)
$\therefore \triangle A \Delta$

A 2-3 tree is constructed by successive insertions of keys given, with a new key always inserted into a leaf of the tree. If the leaf is a 3-node, it's split into two with the middle key promoted to the parent.

2-3 tree construction - an example

Construct a $2-3$ tree the list $9,5,8,3,2,4,7$

```
(0) 5.9) (5.8.9)}\Longrightarrow\mathrm{ (5) (0) <3.5 (0)
<2.3.5
4.50
```


Analysis of 2-3 trees

$\log _{3}(n+1)-1 \leq h \leq \log _{2}(n+1)-1$

Search, insertion, and deletion are in $\Theta(\log n)$

- The idea of 2-3 tree can be generalized by allowing more keys per node
- 2-3-4 trees
- B-trees

Heaps and Heapsort

Definition A heap is a binary tree with keys at its nodes (one key per node) such that:

- It is essentially complete, i.e., all its levels are full except possibly the last level, where only some rightmost keys may be missing

The key at each node is \geq keys at its children

Illustration of the heap's definition

a heap
not a heap
not a heap

Note: Heap's elements are ordered top down (along any path down from its root), but they are not ordered left to right

- Given n, there exists a unique binary tree with n nodes that is essentially complete, with $h=\left\lfloor\log _{2} n\right\rfloor$

The root contains the largest key

- The subtree rooted at any node of a heap is also a heap
- A heap can be represented as an array

Heap's Array Representation

Store heap's elements in an array (whose elements indexed, for convenience, 1 to n) in top-down left-to-right order Example:

Left child of node j is at $2 j$
Right child of node j is at $2 j+1$

- Parent of node j is at $\lfloor j / 2\rfloor$
- Parental nodes are represented in the first $\lfloor n / 2\rfloor$ locations

Heap Construction (bottom-up)

Step 0: Initialize the structure with keys in the order given

Step 1: Starting with the last (rightmost) parental node, fix the heap rooted at it, if it doesn't satisfy the heap condition: keep exchanging it with its largest child until the heap condition holds

Step 2: Repeat Step 1 for the preceding parental node

Example of Heap Construction

Construct a heap for the list $2,9,7,6,5,8$

Pseudopodia of bottom-up heap construction

Algorithm HeapBottomUp (H[1..n])
//Constructs a heap from the elements of a given array
// by the bottom-up algorithm
//Input: An array $H[1 . . n]$ of orderable items
//Output: A heap $H[1 . . n]$
for $i \leftarrow\lfloor n / 2\rfloor$ downto 1 do
$k \leftarrow i ; \quad v \leftarrow H[k]$
heap \leftarrow false
while not heap and $2 * k \leq n$ do

$$
j \leftarrow 2 * k
$$

if $j<n \quad / /$ there are two children
if $H[j]<H[j+1] \quad j \leftarrow j+1$
if $v \geq H[j]$ heap \leftarrow true
else $H[k] \leftarrow H[j] ; \quad k \leftarrow j$
$H[k] \leftarrow v$

Heapsort

Stage 1: Construct a heap for a given list of n keys

Stage 2: Repeat operation of root removal $n-1$ times:

- Exchange keys in the root and in the last (rightmost) leaf
- Decrease heap size by 1
- If necessary, swap new root with larger child until the heap condition holds

Example of Sorting by Heapsort
Sort the list 2, 9, 7, 6, 5, 8 by heapsort

Stage 1 (heap construction)
$\begin{array}{llllll}1 & 9 & 7 & 6 & 5 & 8\end{array}$
$\begin{array}{llllll}2 & \underline{9} & 8 & 6 & 5 & 7\end{array}$
$\begin{array}{llllll}2 & 9 & 8 & 6 & 5 & 7\end{array}$
$\begin{array}{llllll}9 & 2 & 8 & 6 & 5 & 7\end{array}$
$\begin{array}{llllll}9 & 6 & 8 & 2 & 5 & 7\end{array}$

Stage 2 (root/max removal)

$\underline{9}$	6	8	2	5	7
7	6	8	2	5	9
8	6	7	2	5	9
5	6	7	2	8	9
7	6	5	2	8	9
2	6	5	7	8	9
6	2	5	7	8	9
5	2	6	7	8	9
5	2	6	7	8	9
2	5	6	7	8	9

Analysis of Heapsort

Stage 1: Build heap for a given list of n keys worst-case $h-1$

$$
\begin{gathered}
C(n)=\sum_{i=0} 2(h-i) 2^{i}=2\left(n-\log _{2}(n+1)\right) \in \Theta(n) \\
\text { \# nodes at } \\
\text { level } i
\end{gathered}
$$

Stage 2: Repeat operation of root removal $n-1$ times (fix heap) worst-case

$$
C(n)=\sum_{i=1}^{n-1} 2 \log _{2} i \in \Theta(n \log n)
$$

Both worst-case and average-case efficiency: ©(nlogn)
In-place: yes
Stability: no (e.gn, 1 1)

Priority Queue

A priority queue is the ADT of a set of elements with numerical priorities with the following operations:

- find element with highest priority
- delete element with highest priority
- insert element with assigned priority (see below)

Heap is a very efficient way for implementing priority queues

Two ways to handle priority queue in which highest priority = smallest number

Insertion of a New Element into a Heap

Insert the new element at last position in heap.

- Compare it with its parent and, if it violates heap condition, exchange them
Continue comparing the new element with nodes up the tree until the heap condition is satisfied

Example: Insert key 10

Horner's Rule For Polynomial Evaluation

Given a polynomial of degree n

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

and a specific value of x, find the value of p at that point.

Two brute-force algorithms:
$p \leftarrow 0$
for $i \leftarrow \boldsymbol{n}$ downto 0 do

$$
\begin{aligned}
& \text { power } \leftarrow 1 \\
& \text { for } j \leftarrow 1 \text { to } i \text { do } \\
& p o w e r ~ \leftarrow \text { power }^{*} x \\
& p \leftarrow p+a_{i}^{*} \text { power }
\end{aligned}
$$

$p \leftarrow a_{0} ;$ power $\leftarrow 1$
for $i \leftarrow 1$ to n do power \leftarrow power *x x $p \leftarrow p+a_{i}^{*}$ power return p

Horner's Rule

$$
\text { Example: } \begin{aligned}
p(x) & =2 x^{4}-x^{3}+3 x^{2}+x-5= \\
& =x\left(2 x^{3}-x^{2}+3 x+1\right)-5= \\
& =x\left(x\left(2 x^{2}-x+3\right)+1\right)-5= \\
& =x(x(x(2 x-1)+3)+1)-5
\end{aligned}
$$

Substitution into the last formula leads to a faster algorithm

Same sequence of computations are obtained by simply arranging the coefificient in a table and proceeding as follows:
coefficients $2 \quad-1 \quad 3 \quad 1 \quad-5$

$$
x=3
$$

Horner's Rule pseudocode

ALGORITHM Horner ($P[0 . . n], x)$

//Evaluates a polynomial at a given point by Horner's rule //Input: An array $P[0 . . n]$ of coefficients of a polynomial of degree n // (stored from the lowest to the highest) and a number x //Output: The value of the polynomial at x
$p \leftarrow P[n]$
for $i \leftarrow n-1$ downto 0 do

$$
p \leftarrow x * p+P[i]
$$

return p
Efficiency of Horner's Rule: \# multiplications $=$ \# additions $=\boldsymbol{n}$
Synthetic ofivision of of $p(x)$ by $\left(x-x_{0}\right)$
Example: Let $p(x)=2 x^{4}-x^{3}+3 x^{2}+x-5$. Find $p(x):(x-3)$

Computing a^{n} (revisited)

Lefi-to-right binary exponentiation

Initialize product accumulator by 1.
Scan n 's binary expansion from left to right and do the following:
If the current binary digit is 0 , square the accumulator (S); if the binary digit is 1 , square the accumulator and multiply it by a (SM).

Example: Compute a ${ }^{13}$. Here, $n=13=1101_{2}$. binary rep. of 13 :
accumulator: $1 \quad 1^{12 *} a=a \quad a^{2 *} a=a^{3}\left(a^{3}\right)^{2}=a^{6}\left(a^{0}\right)^{2 *} a=a^{13}$ (computed left-to-right)

Pificiency: $(b-1) \leq \mathrm{M}(n) \leq 2(b-1)$ where $b=\left\lfloor\log _{2} n\right\rfloor+1$

Computing a^{n} (cont.)

Right-to-lefit binary exponentiotion

Scan n^{\prime} s binary expansion from right to left and compute a^{μ} as the product of terms $a^{2 i}$ corresponding to 1 's in this expansion.

Example Compute a^{13} by the right-to-left binary exponentiation. Here, $n=13=1101_{2}$.

1	1	0	1			
a^{8}	a^{4}	a^{2}	a	$:$	a^{2} terms	
a^{8}	$\%$	a^{4}	$*$	a	$:$	product
(computed right-to-lefit)						

Eificiency: same as that of left-to-right binary exponentiation

Problem Reduction

This variation of transform-and-conquer solves a problem by a transforming it into different problem for which an algorithm is already available.

To be of practical value, the combined time of the transformation and solving the other problem should be smaller than solving the problem as given by another method

Examples of Solving Problems by Reduction

- computing $\operatorname{lcm}(m, n)$ via computing $\operatorname{gcd}(m, n)$
- counting number of paths of length n in a graph by raising the graph's adjacency matrix to the n-th power
- transforming a maximivation problem to a minimivation problem and vice versa (also, min-heap construction)
linear programming
oreduction to graph problems (e.g, solving purviles via statespace graphs)

