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Divide-and-ConquerDivide-and-Conquer

The most-well known algorithm design strategy:The most-well known algorithm design strategy:

2.2.   Divide instance of problem into two or more smaller Divide instance of problem into two or more smaller 
instancesinstances

4.4. Solve smaller instances recursivelySolve smaller instances recursively

6.6. Obtain solution to original (larger) instance by combining Obtain solution to original (larger) instance by combining 
these solutionsthese solutions
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Divide-and-Conquer Technique (cont.)Divide-and-Conquer Technique (cont.)

subproblem 2 
of size n/2

subproblem 1 
of size n/2

a solution to 
subproblem 1

a solution to
the original problem

a solution to 
subproblem 2

a problem of size n
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Divide-and-Conquer ExamplesDivide-and-Conquer Examples

 Sorting: mergesort and quicksortSorting: mergesort and quicksort

 Binary tree traversalsBinary tree traversals

 Binary search (?)Binary search (?)

 Multiplication of large integersMultiplication of large integers

 Matrix multiplication: Strassen’s algorithmMatrix multiplication: Strassen’s algorithm

 Closest-pair and convex-hull algorithmsClosest-pair and convex-hull algorithms
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General Divide-and-Conquer RecurrenceGeneral Divide-and-Conquer Recurrence

TT((nn) = ) = aTaT((n/bn/b) + ) + f f ((nn))      where where ff((nn))  ∈∈  ΘΘ((nndd),),   d    d ≥≥  00

Master TheoremMaster Theorem:    If :    If a < ba < bdd,,    T    T((nn) ) ∈∈  ΘΘ((nndd))  

                                                                    If If a = ba = bdd,,     T     T((nn) ) ∈∈  ΘΘ((nnd d log log nn))  

                                                                    If If a > ba > bdd,,     T     T((nn) ) ∈∈  ΘΘ((nnlog log b b a a ))  

Note: The same results hold with O instead of Note: The same results hold with O instead of ΘΘ..

Examples: Examples: TT((nn) = 4) = 4TT((nn/2) + /2) + nn    ⇒⇒    TT((nn) ) ∈∈ ? ?

                                      TT((nn) = 4) = 4TT((nn/2) + /2) + nn22  ⇒⇒    TT((nn) ) ∈∈ ? ?

                                      TT((nn) = 4) = 4TT((nn/2) + /2) + nn33  ⇒⇒    TT((nn) ) ∈∈ ? ?
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MergesortMergesort

 Split array A[0..Split array A[0..nn-1] in two about equal halves and make -1] in two about equal halves and make 
copies of each half  in arrays B and Ccopies of each half  in arrays B and C

 Sort arrays B and C recursivelySort arrays B and C recursively
 Merge sorted arrays B and C into array A as follows:Merge sorted arrays B and C into array A as follows:

• Repeat the following until no elements remain in one of Repeat the following until no elements remain in one of 
the arrays:the arrays:

– compare the first elements in the remaining compare the first elements in the remaining 
unprocessed portions of the arraysunprocessed portions of the arrays

– copy the smaller of the two into A, while copy the smaller of the two into A, while 
incrementing the index indicating the unprocessed incrementing the index indicating the unprocessed 
portion of that array portion of that array 

• Once all elements in one of the arrays are processed, Once all elements in one of the arrays are processed, 
copy the remaining unprocessed elements from the other copy the remaining unprocessed elements from the other 
array into A.array into A.
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Pseudocode of MergesortPseudocode of Mergesort
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Pseudocode of MergePseudocode of Merge
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Mergesort ExampleMergesort Example

8  3  2  9  7  1  5  4

8  3  2  9 7  1  5  4

8  3  2  9 7 1 5  4

8 3 2 9 7 1 5 4

3  8 2  9 1  7 4  5

2  3  8  9 1  4  5  7

1  2  3  4  5  7  8   9
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Analysis of MergesortAnalysis of Mergesort

 All cases have same efficiency: All cases have same efficiency: ΘΘ((n n log log nn) ) 

 Number of comparisons in the worst case is close to Number of comparisons in the worst case is close to 
theoretical minimum for comparison-based sorting: theoretical minimum for comparison-based sorting: 

                                      loglog22  nn!!      ≈≈        nn log log2 2 n  n  - 1.44- 1.44nn

 Space requirement: Space requirement: ΘΘ((nn) () (notnot in-place) in-place)

 Can be implemented without recursion (bottom-up)Can be implemented without recursion (bottom-up)
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QuicksortQuicksort

 Select a Select a pivotpivot (partitioning element) – here, the first element (partitioning element) – here, the first element
 Rearrange the list so that all the elements in the first Rearrange the list so that all the elements in the first s s 

positions are smaller than or equal to the pivot and all the positions are smaller than or equal to the pivot and all the 
elements in the remaining elements in the remaining n-s n-s positions are larger than or positions are larger than or 
equal to the pivot (see next slide for an algorithm)equal to the pivot (see next slide for an algorithm)

 Exchange the pivot with the last element in the first (i.e., Exchange the pivot with the last element in the first (i.e., ≤≤) ) 
subarray — the pivot is now in its final positionsubarray — the pivot is now in its final position

 Sort the two subarrays recursivelySort the two subarrays recursively

p

A[i]≤p A[i]≥p
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Partitioning AlgorithmPartitioning Algorithm
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Quicksort ExampleQuicksort Example

5   3   1   9   8   2   4   75   3   1   9   8   2   4   7
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Analysis of QuicksortAnalysis of Quicksort

 Best case: split in the middle Best case: split in the middle — — ΘΘ((n n log log nn) ) 
 Worst case: sorted array! — Worst case: sorted array! — ΘΘ((nn22) ) 
 Average case: random arrays Average case: random arrays ——  ΘΘ((n n log log nn))

 Improvements:Improvements:

• better pivot selection: median of three partitioning better pivot selection: median of three partitioning 

• switch to insertion sort on small subfilesswitch to insertion sort on small subfiles

• elimination of recursionelimination of recursion

These combine to 20-25% improvementThese combine to 20-25% improvement

 Considered the method of choice for internal sorting of large Considered the method of choice for internal sorting of large 
files (files (nn  ≥≥ 10000) 10000)
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Binary SearchBinary Search

Very efficient algorithm for searching in Very efficient algorithm for searching in sorted arraysorted array::
                                                                                            KK

                    vsvs
A[0]  .  .  .  A[A[0]  .  .  .  A[mm]  .  .  .  A[]  .  .  .  A[nn-1]-1]

If If K = K = A[A[mm], stop (successful search);  otherwise, continue], stop (successful search);  otherwise, continue
searching by the same method in A[0..searching by the same method in A[0..mm-1] if -1] if K < K < A[A[mm]]
and in A[and in A[mm+1..+1..nn-1] if -1] if K > K > A[A[mm]]

l l ←← 0;    0;   rr  ←←  nn-1-1

while while ll  ≤≤  rr do do

mm  ←←    ((ll++rr)/2)/2
          if  if  K = K = A[A[mm]  return ]  return mm
          else if else if K < K < A[A[mm]  ]  r r ←←  mm-1-1

          else else l l ←←  mm+1+1
return -1return -1
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Analysis of Binary SearchAnalysis of Binary Search

 Time efficiencyTime efficiency

• worst-case recurrence:  worst-case recurrence:  CCw w ((nn) = 1 + ) = 1 + CCww ( ( nn/2/2 ),   ),  CCw w (1) = 1 (1) = 1 

solution: solution: CCww ((nn) =) =   loglog22((nn+1)+1)  

This is VERY fast: This is VERY fast: e.g., Ce.g., Cww (10(1066) = 20) = 20

 Optimal for searching a sorted arrayOptimal for searching a sorted array

 Limitations: must be a sorted array (not linked list)Limitations: must be a sorted array (not linked list)

 Bad (degenerate) example of divide-and-conquerBad (degenerate) example of divide-and-conquer

 Has a continuous counterpart called Has a continuous counterpart called bisection methodbisection method for  for 
solving equations in one unknown solving equations in one unknown ff((xx) ) = = 0 (see Sec. 12.4)0 (see Sec. 12.4)
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Binary Tree AlgorithmsBinary Tree Algorithms

Binary tree is a divide-and-conquer ready structure!Binary tree is a divide-and-conquer ready structure!

Ex. 1: Classic traversals (preorder, inorder, postorder)Ex. 1: Classic traversals (preorder, inorder, postorder)

Algorithm Algorithm InorderInorder((TT))

if if T T ≠≠    ∅∅           aa     a    a

        InorderInorder((TTleftleft))                                  b           c               b            cb           c               b            c

        print(root of print(root of TT))                                        d        e       d        e                 d      e    d      e

        InorderInorder((TTrightright))                                                                                                              

Efficiency:Efficiency:  ΘΘ((nn) ) 
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Binary Tree Algorithms (cont.)Binary Tree Algorithms (cont.)

Ex. 2: Computing the height of a binary tree Ex. 2: Computing the height of a binary tree 
T TL R

hh((TT) = max{) = max{hh((TTLL), ), hh((TTRR)} + 1  if )} + 1  if T T ≠≠ ∅∅  and    and  hh((∅∅) = -1) = -1

Efficiency: Efficiency: ΘΘ((nn)) 
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Multiplication of Large Integers Multiplication of Large Integers 

Consider the problem of multiplying two (large) Consider the problem of multiplying two (large) nn-digit integers -digit integers 
represented by arrays of their digits such as:represented by arrays of their digits such as:

A = 12345678901357986429   B = 87654321284820912836A = 12345678901357986429   B = 87654321284820912836

The grade-school algorithm:The grade-school algorithm:
aa1  1  aa2 2 …  …  aann

                              bb1  1  bb2 2 …  …  bbnn

        ((dd1010))  dd1111dd12 12 … … dd11nn

                  ((dd2020))  dd2121dd22 22 … … dd22nn

                … … … … … … … … … … … … … … 

((ddnn00))  ddnn11ddnn2 2 … … ddnnnn

  

Efficiency: Efficiency: nn2 2 one-digit multiplicationsone-digit multiplications
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First Divide-and-Conquer AlgorithmFirst Divide-and-Conquer Algorithm

A small example: A A small example: A ∗∗ B where A = 2135 and B = 4014 B where A = 2135 and B = 4014

A = (21·10A = (21·1022 + 35),  B = (40 ·10 + 35),  B = (40 ·1022 + 14) + 14)

So, A So, A ∗∗  B = (21 ·10B = (21 ·1022 + 35)  + 35) ∗∗ (40 ·10 (40 ·1022 + 14)  + 14) 

            = 21 = 21 ∗∗ 40 ·10 40 ·104  4  + (21 + (21 ∗∗ 14 + 35  14 + 35 ∗∗ 40) ·10 40) ·1022 + 35  + 35 ∗∗ 14 14

In general, if A = AIn general, if A = A11AA2 2 and B = Band B = B11BB2   2   (where A and B are (where A and B are nn-digit, -digit, 

AA11, A, A22, B, B11,,  BB2 2 are are n/n/2-digit numbers),2-digit numbers),

A A ∗∗  B = AB = A1 1 ∗∗ B B11·10·10nn     + (A+ (A1 1 ∗∗ B B2 2 + A+ A2 2 ∗∗ B B11) ·10) ·10n/n/2 2 + A+ A2 2 ∗∗ B B22

Recurrence for the number of one-digit multiplications M(Recurrence for the number of one-digit multiplications M(nn): ): 

                                                          M(M(nn) = 4M() = 4M(nn/2),   M(1) = 1/2),   M(1) = 1
Solution: M(Solution: M(nn) = ) = nn2 2 
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Second Divide-and-Conquer AlgorithmSecond Divide-and-Conquer Algorithm

A A ∗∗ B = A B = A1 1 ∗∗ B B11·10·10nn     + (A+ (A1 1 ∗∗ B B2 2 + A+ A2 2 ∗∗ B B11) ·10) ·10n/n/2 2 + A+ A2 2 ∗∗ B B22

The idea is to decrease the number of multiplications from 4 to 3:  The idea is to decrease the number of multiplications from 4 to 3:  

      (A(A11 + A + A22 )  ) ∗∗ (B (B11 + B + B22 ) = A ) = A1 1 ∗∗ B B11 + (A + (A1 1 ∗∗ B B2 2 + A+ A2 2 ∗∗ B B11) + A) + A2 2 ∗∗ B B2,2,

I.e., (AI.e., (A1 1 ∗∗ B B2 2 + A+ A2 2 ∗∗ B B11) = (A) = (A11 + A + A22 )  ) ∗∗ (B (B11 + B + B22 ) - A ) - A1 1 ∗∗ B B11 - A - A2 2 ∗∗ B B2,2,  

which requires only 3 multiplications at the expense of (4-1) extra which requires only 3 multiplications at the expense of (4-1) extra 
add/sub.add/sub.

Recurrence for the  number of multiplications M(Recurrence for the  number of multiplications M(nn):):
                             M(                             M(nn) = 3) = 3MM((nn/2),   M(1) = 1/2),   M(1) = 1

Solution: M(Solution: M(nn) = 3) = 3log log 22nn  = = nnloglog  2233  ≈≈  nn1.585 1.585 
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Example of Large-Integer MultiplicationExample of Large-Integer Multiplication  
  

2135 2135 ∗∗ 4014 4014
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Strassen’s Matrix MultiplicationStrassen’s Matrix Multiplication

        Strassen observed [1969] that  the product of two matrices can Strassen observed [1969] that  the product of two matrices can 
be computed as follows:be computed as follows:

CC00    00    CC0101                A                A0000    A    A0101                B                B0000    B    B0101

                                                            =                             *=                             *

CC10    10    CC1111                A                A1010    A    A1111                B                B1010    B    B1111

                                                        MM11   + M   + M44  - M  - M5 5 + M+ M77                        M                        M3 3 + M+ M55  

                                                          =                   =                   

                                                      MM22 + M + M4                                               4                                               MM11   + M   + M33  - M  - M2 2 + M+ M66  
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Formulas for Strassen’s AlgorithmFormulas for Strassen’s Algorithm

MM11 = (A = (A0000  + A + A1111) ) ∗∗ (B (B0000 +  + BB1111))

MM22 = (A = (A1010  + A + A1111) ) ∗∗ B B0000

MM33 = A = A0000  ∗∗ (B (B0101 -  - BB1111))

MM44 =  A =  A1111  ∗∗ (B (B1010 -  - BB0000))

MM55 = (A = (A0000  + A + A0101) ) ∗∗  BB1111

MM66 = (A = (A1010  - A - A0000) ) ∗∗ (B (B0000 +  + BB0101))

MM77 = (A = (A0101  - A - A1111) ) ∗∗ (B (B1010 +  + BB1111))
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Analysis of Strassen’s AlgorithmAnalysis of Strassen’s Algorithm

If If nn is not a power of 2, matrices can be padded with zeros. is not a power of 2, matrices can be padded with zeros.

Number of multiplications:Number of multiplications:

                                                                  M(M(nn) = 7M() = 7M(nn/2),   M(1) = 1/2),   M(1) = 1

Solution: M(Solution: M(nn) = 7) = 7log log 22nn   = = nnlog log 227 7 ≈≈  nn2.807    2.807    vs.  vs.  nn3 3 of brute-force alg.of brute-force alg.

Algorithms with better asymptotic efficiency are known but theyAlgorithms with better asymptotic efficiency are known but they
are even more complex. are even more complex. 
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Closest-Pair Problem by Divide-and-ConquerClosest-Pair Problem by Divide-and-Conquer

Step 1  Divide the points given into two subsets SStep 1  Divide the points given into two subsets S11 and S and S22 by a  by a 

vertical line vertical line xx =  = cc so that half the points lie to the left or on  so that half the points lie to the left or on 
the line and half the points lie to the right or on the line.the line and half the points lie to the right or on the line.
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Closest Pair by Divide-and-Conquer (cont.)Closest Pair by Divide-and-Conquer (cont.)

Step 2  Find recursively the closest pairs for the left and rightStep 2  Find recursively the closest pairs for the left and right
     subsets.     subsets.

Step 3   Set Step 3   Set dd = min{ = min{dd11, , dd22}}

                          We can limit our attention to the points in the symmetricWe can limit our attention to the points in the symmetric
      vertical strip of width 2      vertical strip of width 2dd as possible closest pair. Let C as possible closest pair. Let C11

               and C and C22 be the subsets of points in the left subset S be the subsets of points in the left subset S11 and of and of
      the right subset S      the right subset S22, respectively, that lie in this vertical, respectively, that lie in this vertical
      strip. The points in C      strip. The points in C1 1 and Cand C2 2 are stored in increasing are stored in increasing 
      order of their       order of their yy coordinates, which is maintained by coordinates, which is maintained by
      merging during the execution of the next step.      merging during the execution of the next step.

Step 4   For every point Step 4   For every point PP((xx,,yy) in C) in C11, we inspect points in, we inspect points in
      C      C22 that may be closer to  that may be closer to PP than  than dd.  There can be no more.  There can be no more
      than 6 such points (because       than 6 such points (because dd  ≤≤  dd22)!)!  
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Closest Pair by Divide-and-Conquer: Worst CaseClosest Pair by Divide-and-Conquer: Worst Case  

The worst case scenario is depicted below:The worst case scenario is depicted below:
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Efficiency of the Closest-Pair AlgorithmEfficiency of the Closest-Pair Algorithm

Running time of the algorithm is described byRunning time of the algorithm is described by

                                        T(T(nn) = 2T() = 2T(nn/2) + M(/2) + M(nn),  where M(),  where M(nn) ) ∈∈ O( O(nn) ) 

By the Master Theorem (with By the Master Theorem (with aa = 2,  = 2, bb = 2,  = 2, dd = 1) = 1)

                                                                    T(T(nn) ) ∈∈ O( O(nn log  log nn))
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Quickhull Algorithm Quickhull Algorithm 

Convex hullConvex hull: smallest convex set that includes given points: smallest convex set that includes given points
 Assume points are sorted by Assume points are sorted by xx-coordinate values-coordinate values

 Identify Identify extreme pointsextreme points  PP11 and  and PP22  (leftmost and rightmost)  (leftmost and rightmost)

 Compute Compute upper hullupper hull recursively: recursively:
• find point find point PPmaxmax that is farthest away from line  that is farthest away from line PP11PP22

• compute the upper hull of the points to the left of line compute the upper hull of the points to the left of line PP11PPmaxmax

• compute the upper hull of the points to the left of line compute the upper hull of the points to the left of line PPmaxmaxPP22

 Compute Compute lower hulllower hull in a similar manner in a similar manner

P1

P2

Pmax
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Efficiency of Quickhull AlgorithmEfficiency of Quickhull Algorithm

 Finding point farthest away from line Finding point farthest away from line PP11PP2 2 can be done in can be done in 

linear timelinear time
 Time efficiency: Time efficiency: 

• worst case: worst case: ΘΘ((nn22)  (as )  (as quicksort)quicksort)

• average case: average case: ΘΘ((nn) (under reasonable assumptions about) (under reasonable assumptions about
                                  distribution of points given)                                  distribution of points given)

 If points are not initially sorted by If points are not initially sorted by xx-coordinate value, this -coordinate value, this 
can be accomplished in can be accomplished in O(O(n n log log nn) time) time

 Several Several O(O(n n log log nn) ) algorithms for convex hull are knownalgorithms for convex hull are known


