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Divide-and-Conqguer

The most-well known algorithm design strategy:
Divide instance of problem into two or more smaller

instances
Solve smaller instances recursively

Obtain solution to original (larger) instance by combining

these solutions
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Divide-and-Conqguer Technique (cont.

a problem of size n

subproblem 2
of size n/2

subproblem 1
of size n/2
a solution to a solution to
subproblem 1 subproblem 2
a solution to
the original problem
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Divide-and-Conquer Examples

Sorting: mergesort and quicksort

Binary tree traversals

Binary search (?)

Multiplication of large integers

Matrix multiplication: Strassen’s algorithm
4-4
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Closest-pair and convex-hull algorithms

ved.

“ \|\|\|\||\|\|\|\||\|\|\|\||-
\|\|\||||||||||||\||-
Copyright © 2007 Pearson Addison-Wesley. All rights reser

M]mII\I\I\II\I\I\II\I\I\I\II\I!II_
i



™
\
U™
-y |
™
o

rence
General Divide-and-Conquer Recur

I(n) = al(n/b) + f(n) where fin) [ ©(n?), d=0

d

Master Theorem: Ifa<b?% 1T(n) D O(n?)
Ifa=0b% 1(n) [ O(n*log n)
() 1§ O@°er®)

It a > b?,
1 18 Q)
Note: The same results hold with O instead o

2
Examples: 1(n)=41(n/2) +n [0 1(n) L 3
I(n)=4T(n/2) + n? 1 T(n) Ll

T(n) 4T(n/2)+n3D I(n D"
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Mergesort
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Split array AJ0..n-1] in two about equal halves and make
copies of each half’ in arrays Bland C

Sort arrays B and C recursively
Merge sorted arrays B and C into array A as follows:

Repeat the following until no elements remain in one of’

the arrays:
compare the first elements/in the remaining

unprocessed portions of the arrays
copy the smaller of the two into A, while
incrementing the index indicating the unprocessed
portion of that array

Once all elements in one of the arrays are processed,
copy the remaining unprocessed elements from the other
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Pseudocode ol Mergesort
ALGORITHM Mergesort(A|0..n — 1])
/ISorts array A[0..n — 1] by recursive mergesort

//Input: An array A[0..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in nondecreasing order

ifn>1
copy A[0..|n/2] — 1] to B[0..|n/2] — 1]

copy A[|n/2]..n — 1]to C[0..[n/2] — 1]
Mergesort(B|0..|n/2| — 1])
Mergesort(C|0..[n/2] — 1])

Merge(B, C, A)

A. Leviin “Introduction o the Design & Analysis of Algorithms,” 2™ ed., Ch. 4
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ALGORITHM Merge(B|0..p — 1], C[0..g — 1], A[O..p + g — 1]
[/Merges two sorted arrays into one sorted array
[/Input: Arrays B|0..p — 1] and C[0..g — 1] both sorted
//Output: Sorted array A[0..p + g — 1] of the elements of B and C
[ <0, ]« 0; k<0
whilei < pand j < g do
if B[i] < C[/]
Alk] < Blil]; i < i+ 1
else A[k] < C[j]; j«< j+1
k<—k+1
ifi =p
copy Clj..g — 1]to Alk..p + g — 1]
else copy B[i..p — 1| to Alk..p + g — 1]
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Mergesort Example
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Analysis of Vergesort

All cases have same efficiency: O(n log n)

Number of: comparisons in the worst case is close to
theoretical minimum for comparison-based sorting:
nlog, w - 1.44n

Hog, nllL =

Space requirement: @(n) (not in-place)

Can be implemented without recursion (bottom-up)
4-10
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Quicksort

Ty

Select a pivor (partitioning element) — here, the first element

Rearrange the list so that all the elements in the first s
positions are smaller than or equal to the pivot and all the
elements in the remaining n-s positions are larger than or
equal to the pivot (see next slide for an algorithm)

Alilsp Ali]zp

Exchange the pivot with the last element in the first (i.e., <)
subarray — the pivot is now in its/final position

Ty o
ﬂnmmmmu-g. Sort the two Sllbarrays recur Slvely
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Partitioning Algorithm
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Algorithm Peariition(All.r])
{ {Partitions a subarray by using s first element as a pivot
{ {mput: A subarray A[l..r] of A[0..n — 1], defined by its left and right

i indices { and r (I < r)

{ {Output: A partihion of A[l.r], with the split position returned as
i this function’s value

p + All]

i jer+1

repeat

repeat i + ¢+ 1 until 4[] = p
repeat j + j — 1 until A[j] - »p
swap(A[{], Alj])
until 2 = j
swapl(Ali, A[f]) //undo last swap when § = §
swap(All], Alj])

return j
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Quicksort Example

53 1 98247
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Analysis of Quicksort

Best case: split in the middle — O(n log n)

Worst case: sorted array! — O(n°)
Average case: random arrays — O(n log n)

Improvements:

better pivot selection: median of three partitioning
switch to insertion sort on small subfiles

elimination of recursion
These combine to 20-25% improvement

Considered the method of choice for internal sorting of large
A. Levitin “Infroduction o the Design & Analysis of Algoritims,” 2 ed., Ch. 4 4-14
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Binary Search
Very efficient algorithm for searching in sorted array:

K
VS
Af0] . .. A[m] . .. A[n-1]
It K= A[ml], stop (successtul search); otherwise, continue
searching by the same method in AJ0..m-1] it K < A[m]

and in A[m+1..n-1] if K> A[m]

[ - 0; r ~ n-1

while I'< 7 do
m — [([+r)/2[0
it K= A[m] return m
elseif K< A|m] r — m-1

A. Leviin “Introduction o the Design & Analysis of Algorithms,” 2™ ed., Ch. 4
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Analysis of Binary Search

Time efficiency
worst-case recurrence: C (n)= 1+ C ([m/20), C (1)= 1

solution: C (n) = Hog,(nt 1)L
This is VERY fast: e.g., C (10°) =20

Optimal for searching a sorted array

Limitations: must be a sorted array (not linked list)

Bad (degenerate) example of divide-and-conquer
4-16

Has a continuous counterpart called bisection method for
solving equations in one unknown f{x) = 0 (see Sec. 12.4)
A. Leviin “Introduction o the Design & Analysis of Algorithms,” 2™ ed., Ch. 4
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Binary Tree Algorithms

Binary tree is a divide-and-conquer ready structure!

Ex. 1: Classic traversals (preorder, inorder, postorder)

Algorithm Inorder(T)
if T# [ a a
Inorder(1,,,) b C b C
d e d e

print(root of 7)
Inorder(1.; ;)

|||||||||||||||-EffiCiency: ®(n)
4-17
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Binary Tree Algorithms (cont.)

Ex. 2: Computing the height of a binary tree

A A

(1) = max{h(T,), (T, )} + 1 it T# [0 and h()=-1
Efficiency: O(n)
Hﬂl\l\l\mlmnmm\l\ll-
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Multiplication of ILarge Integers

Consider the problem of multiplying two (large) n-digit 1ntege
represented by arrays of their digits such as:

A = 12345678901357986429 B = 87654321284820912836
The grade-school algorithm:

a, a,... @,
b, b,... b,

(dl()) d11d12 S8 dln
(dZO) d21d22 S s dZn

(an) dnldnz SISe dnn
4-19

\I\I\I\II\I\I\I\II\I\I\I\II-

“\I\I\IIIIIIIIIIII\II-

MﬂﬂI|\I\I\II\I\I\II\I\I\I\II\I
"'Tﬁlcwncyednzv@newdlgw multiplicationpsin & Aneyss ofagoritms; 2¢ed, ch 4



™
\
U™
-y |
™
o

First Divide-and-Conquer Algorithm

A small example: A [IB where A = 2135 and B = 4014

A = (21-10? + 35), B = (40/-10> + 14)
So, A [IB = (21 -10? + 35) [ (40 -102 + 14)
— 21 [040/-10% + (21 14 + 35 [140)-10% + 35 14

In general, ii’ A = A A and B= BB, (where A and Bare n-digit,

A, A, By, B, are n/2-digit numbers),
ATB=A UB-10"+ (A, [B,+ A, [IB)) 10"+ A, [1B,

Recurrence for the number of one-digit multiplications VI(72):
M(n) = 4M(n/2), M(1l) =1
A. Leviin “Introduction o the Design & Analysis of Algorithms,” 2™ ed., Ch. 4 =
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Second Divide-and-Conquer Algorith

A OB= A, OB,107 + (A, B, + A, [IB,) -102+ A, B,

The idea is to decrease the number of multiplications from 4 to 3:

(A + A, LB, + B, )= A, B, + (A, B, + A, [IB)) + A, [IB,

Ie., (A, OB, = A, [IB)) = (A, - A,)) [d(B; +B;)-A, [IB, - A, [IB,
which requires only 3 multiplications at the expense of (4-1) extra

add/sub.
Recurrence for the number of multiplications Vi(72):
Mi(n) = 5M(n/2), M(1) =1

4-21
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Example of Large-Integer Multiplicati

2135 [14014

4-22
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Strassen’s Matrix Multiplication

Strassen observed [1969] that the product of two matrices can

be computed as follows:

Co Cun B A S
_ %
Chn Cy A A v
M, +M, - M.+ M, ke
M, + M, LAy o DL, - L, L
HI\I\I\I\II\I\I\I\II\I\I\I\II-
BT
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Formulas for Strassen’s Algorithm

(AOO o All) |](]300 o Bll)

(Al() * All) |]]300

M, = Ay, (B, - By))

M, = Ay H(B5, = Byy)

= (Aoo o A01) B,

(AIO 5 Aoo) D(Boo 0 Bm)

L ———
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d., Ch. 4
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Analysis of Strassen’s Algorithm

"7 1s not a power: of 2, matrices can be padded with zeros.

Number of multiplications:
M) = 7M(n/2), M(1)='1
Solution: M(n) = 7°¢27= n'°827 = n>897 vs. n’ of brute-force alg.

Algorithms with better asymptotic efficiency are known but they

are even more COIIII)IEX.
4-25
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Closest-Pair Problem by Divide-and-Conque;

[
R gy

Step 1 Divide the points given into two subsets S, and S, by a :
vertical line x = ¢ so that half the points lie to the left or on

the line and half*the points lie to the right or on the line.

4-26
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Closest Pair by Divide-and-Conquer (cont.)
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Step 2 Find recursively the closest pairs for the left and right
subsets.

Step 3 Setd = min{d,, d }

We can limit our attention to the points in the symmetric
vertical strip of width 2d as possible closest pair. ILet C,

and C, be the subsets of points in the left subset S; and of
the right subset S;, respectively, that lie in this vertical
strip. The points in C, and C, are stored'in increasing

order of their y coordinates, which is maintained by
merging during the execution of the next step.

Step 4 FEor every point P(x.y)in C,, we inspect points in

S C, that may be closer to P than d. There can be no more

e than 6, such points (because d < d,)!

- Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Leviin “Introduction o the Design & Analysis of Algorithms,” 2™ ed., Ch. 4 4-27
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Closest Pair by Divide-and-Conquer: Worst Ca

The worst case scenario is depicted below:

4-28
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Efliciency of the Closest-Pair Algorithm

Running time of the algorithm is described by
1(n) = 21 (n/2) + M(n), where Vi(n) [ O(n)

By the Master Theorem (witha=2,b=2,d=1)
1(n) [ O(n2log n)

4-29
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Quickhull Algorithm

Convex hull: smallest convex set that includes given points

Assume points are sorted by x-coordinate values
Identily extreme points P, and P, (leftmost and rightmost)

Compute upper hull recursively:
find point P, that is farthest away from line P P,
compute the upper hull of the pointsito the left of line PP, =
compute the upper hull of the points to the left of line PP,

Coglpute lower hull'in a similar manner

max y
L J -
() P 2
. =
/)
()
. [ )
[ )
T P y -
— i 1 -
\I\I\IIIIIIIIIIII\II-
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Efficiency of Quickhull Algorithm

Finding point farthest away from line P, P, can be done in

linear time
Time efficiency:
worst case: O(n°) (as quicksort)
average case: O(n) (under reasonable assumptions about
distribution of points given)

If points are not initially sorted by x-coordinate value, this

can be accomplished'in O(n log n) time
Several O(n log n) algorithms for convex hull are known
4-31
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