
Chapter 4Chapter 4

Divide-and-ConquerDivide-and-Conquer

Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

4-2Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Divide-and-ConquerDivide-and-Conquer

The most-well known algorithm design strategy:The most-well known algorithm design strategy:

2.2. Divide instance of problem into two or more smaller Divide instance of problem into two or more smaller
instancesinstances

4.4. Solve smaller instances recursivelySolve smaller instances recursively

6.6. Obtain solution to original (larger) instance by combining Obtain solution to original (larger) instance by combining
these solutionsthese solutions

4-3Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Divide-and-Conquer Technique (cont.)Divide-and-Conquer Technique (cont.)

subproblem 2
of size n/2

subproblem 1
of size n/2

a solution to
subproblem 1

a solution to
the original problem

a solution to
subproblem 2

a problem of size n

4-4Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Divide-and-Conquer ExamplesDivide-and-Conquer Examples

 Sorting: mergesort and quicksortSorting: mergesort and quicksort

 Binary tree traversalsBinary tree traversals

 Binary search (?)Binary search (?)

 Multiplication of large integersMultiplication of large integers

 Matrix multiplication: Strassen’s algorithmMatrix multiplication: Strassen’s algorithm

 Closest-pair and convex-hull algorithmsClosest-pair and convex-hull algorithms

4-5Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

General Divide-and-Conquer RecurrenceGeneral Divide-and-Conquer Recurrence

TT((nn) =) = aTaT((n/bn/b) +) + f f ((nn)) where where ff((nn)) ∈∈ ΘΘ((nndd),), d d ≥≥ 00

Master TheoremMaster Theorem: If : If a < ba < bdd,, T T((nn)) ∈∈ ΘΘ((nndd))

 If If a = ba = bdd,, T T((nn)) ∈∈ ΘΘ((nnd d log log nn))

 If If a > ba > bdd,, T T((nn)) ∈∈ ΘΘ((nnlog log b b a a))

Note: The same results hold with O instead of Note: The same results hold with O instead of ΘΘ..

Examples: Examples: TT((nn) = 4) = 4TT((nn/2) + /2) + nn ⇒⇒ TT((nn)) ∈∈ ? ?

 TT((nn) = 4) = 4TT((nn/2) + /2) + nn22 ⇒⇒ TT((nn)) ∈∈ ? ?

 TT((nn) = 4) = 4TT((nn/2) + /2) + nn33 ⇒⇒ TT((nn)) ∈∈ ? ?

4-6Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

MergesortMergesort

 Split array A[0..Split array A[0..nn-1] in two about equal halves and make -1] in two about equal halves and make
copies of each half in arrays B and Ccopies of each half in arrays B and C

 Sort arrays B and C recursivelySort arrays B and C recursively
 Merge sorted arrays B and C into array A as follows:Merge sorted arrays B and C into array A as follows:

• Repeat the following until no elements remain in one of Repeat the following until no elements remain in one of
the arrays:the arrays:

– compare the first elements in the remaining compare the first elements in the remaining
unprocessed portions of the arraysunprocessed portions of the arrays

– copy the smaller of the two into A, while copy the smaller of the two into A, while
incrementing the index indicating the unprocessed incrementing the index indicating the unprocessed
portion of that array portion of that array

• Once all elements in one of the arrays are processed, Once all elements in one of the arrays are processed,
copy the remaining unprocessed elements from the other copy the remaining unprocessed elements from the other
array into A.array into A.

4-7Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Pseudocode of MergesortPseudocode of Mergesort

4-8Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Pseudocode of MergePseudocode of Merge

4-9Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Mergesort ExampleMergesort Example

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

4-10Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Analysis of MergesortAnalysis of Mergesort

 All cases have same efficiency: All cases have same efficiency: ΘΘ((n n log log nn))

 Number of comparisons in the worst case is close to Number of comparisons in the worst case is close to
theoretical minimum for comparison-based sorting: theoretical minimum for comparison-based sorting:

 loglog22 nn!! ≈≈ nn log log2 2 n n - 1.44- 1.44nn

 Space requirement: Space requirement: ΘΘ((nn) () (notnot in-place) in-place)

 Can be implemented without recursion (bottom-up)Can be implemented without recursion (bottom-up)

4-11Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

QuicksortQuicksort

 Select a Select a pivotpivot (partitioning element) – here, the first element (partitioning element) – here, the first element
 Rearrange the list so that all the elements in the first Rearrange the list so that all the elements in the first s s

positions are smaller than or equal to the pivot and all the positions are smaller than or equal to the pivot and all the
elements in the remaining elements in the remaining n-s n-s positions are larger than or positions are larger than or
equal to the pivot (see next slide for an algorithm)equal to the pivot (see next slide for an algorithm)

 Exchange the pivot with the last element in the first (i.e., Exchange the pivot with the last element in the first (i.e., ≤≤))
subarray — the pivot is now in its final positionsubarray — the pivot is now in its final position

 Sort the two subarrays recursivelySort the two subarrays recursively

p

A[i]≤p A[i]≥p

4-12Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Partitioning AlgorithmPartitioning Algorithm

4-13Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Quicksort ExampleQuicksort Example

5 3 1 9 8 2 4 75 3 1 9 8 2 4 7

4-14Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Analysis of QuicksortAnalysis of Quicksort

 Best case: split in the middle Best case: split in the middle — — ΘΘ((n n log log nn))
 Worst case: sorted array! — Worst case: sorted array! — ΘΘ((nn22))
 Average case: random arrays Average case: random arrays —— ΘΘ((n n log log nn))

 Improvements:Improvements:

• better pivot selection: median of three partitioning better pivot selection: median of three partitioning

• switch to insertion sort on small subfilesswitch to insertion sort on small subfiles

• elimination of recursionelimination of recursion

These combine to 20-25% improvementThese combine to 20-25% improvement

 Considered the method of choice for internal sorting of large Considered the method of choice for internal sorting of large
files (files (nn ≥≥ 10000) 10000)

4-15Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Binary SearchBinary Search

Very efficient algorithm for searching in Very efficient algorithm for searching in sorted arraysorted array::
 KK

 vsvs
A[0] . . . A[A[0] . . . A[mm] . . . A[] . . . A[nn-1]-1]

If If K = K = A[A[mm], stop (successful search); otherwise, continue], stop (successful search); otherwise, continue
searching by the same method in A[0..searching by the same method in A[0..mm-1] if -1] if K < K < A[A[mm]]
and in A[and in A[mm+1..+1..nn-1] if -1] if K > K > A[A[mm]]

l l ←← 0; 0; rr ←← nn-1-1

while while ll ≤≤ rr do do

mm ←←  ((ll++rr)/2)/2
 if if K = K = A[A[mm] return] return mm
 else if else if K < K < A[A[mm]] r r ←← mm-1-1

 else else l l ←← mm+1+1
return -1return -1

4-16Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Analysis of Binary SearchAnalysis of Binary Search

 Time efficiencyTime efficiency

• worst-case recurrence: worst-case recurrence: CCw w ((nn) = 1 +) = 1 + CCww ((nn/2/2),), CCw w (1) = 1 (1) = 1

solution: solution: CCww ((nn) =) = loglog22((nn+1)+1)

This is VERY fast: This is VERY fast: e.g., Ce.g., Cww (10(1066) = 20) = 20

 Optimal for searching a sorted arrayOptimal for searching a sorted array

 Limitations: must be a sorted array (not linked list)Limitations: must be a sorted array (not linked list)

 Bad (degenerate) example of divide-and-conquerBad (degenerate) example of divide-and-conquer

 Has a continuous counterpart called Has a continuous counterpart called bisection methodbisection method for for
solving equations in one unknown solving equations in one unknown ff((xx)) = = 0 (see Sec. 12.4)0 (see Sec. 12.4)

4-17Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Binary Tree AlgorithmsBinary Tree Algorithms

Binary tree is a divide-and-conquer ready structure!Binary tree is a divide-and-conquer ready structure!

Ex. 1: Classic traversals (preorder, inorder, postorder)Ex. 1: Classic traversals (preorder, inorder, postorder)

Algorithm Algorithm InorderInorder((TT))

if if T T ≠≠ ∅∅ aa a a

 InorderInorder((TTleftleft)) b c b cb c b c

 print(root of print(root of TT)) d e d e d e d e

 InorderInorder((TTrightright))

Efficiency:Efficiency: ΘΘ((nn))

4-18Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Binary Tree Algorithms (cont.)Binary Tree Algorithms (cont.)

Ex. 2: Computing the height of a binary tree Ex. 2: Computing the height of a binary tree
T TL R

hh((TT) = max{) = max{hh((TTLL),), hh((TTRR)} + 1 if)} + 1 if T T ≠≠ ∅∅ and and hh((∅∅) = -1) = -1

Efficiency: Efficiency: ΘΘ((nn))

4-19Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Multiplication of Large Integers Multiplication of Large Integers

Consider the problem of multiplying two (large) Consider the problem of multiplying two (large) nn-digit integers -digit integers
represented by arrays of their digits such as:represented by arrays of their digits such as:

A = 12345678901357986429 B = 87654321284820912836A = 12345678901357986429 B = 87654321284820912836

The grade-school algorithm:The grade-school algorithm:
aa1 1 aa2 2 … … aann

 bb1 1 bb2 2 … … bbnn

 ((dd1010)) dd1111dd12 12 … … dd11nn

 ((dd2020)) dd2121dd22 22 … … dd22nn

 … … … … … … … … … … … … … …

((ddnn00)) ddnn11ddnn2 2 … … ddnnnn

Efficiency: Efficiency: nn2 2 one-digit multiplicationsone-digit multiplications

4-20Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

First Divide-and-Conquer AlgorithmFirst Divide-and-Conquer Algorithm

A small example: A A small example: A ∗∗ B where A = 2135 and B = 4014 B where A = 2135 and B = 4014

A = (21·10A = (21·1022 + 35), B = (40 ·10 + 35), B = (40 ·1022 + 14) + 14)

So, A So, A ∗∗ B = (21 ·10B = (21 ·1022 + 35) + 35) ∗∗ (40 ·10 (40 ·1022 + 14) + 14)

 = 21 = 21 ∗∗ 40 ·10 40 ·104 4 + (21 + (21 ∗∗ 14 + 35 14 + 35 ∗∗ 40) ·10 40) ·1022 + 35 + 35 ∗∗ 14 14

In general, if A = AIn general, if A = A11AA2 2 and B = Band B = B11BB2 2 (where A and B are (where A and B are nn-digit, -digit,

AA11, A, A22, B, B11,, BB2 2 are are n/n/2-digit numbers),2-digit numbers),

A A ∗∗ B = AB = A1 1 ∗∗ B B11·10·10nn + (A+ (A1 1 ∗∗ B B2 2 + A+ A2 2 ∗∗ B B11) ·10) ·10n/n/2 2 + A+ A2 2 ∗∗ B B22

Recurrence for the number of one-digit multiplications M(Recurrence for the number of one-digit multiplications M(nn):):

 M(M(nn) = 4M() = 4M(nn/2), M(1) = 1/2), M(1) = 1
Solution: M(Solution: M(nn) =) = nn2 2

4-21Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Second Divide-and-Conquer AlgorithmSecond Divide-and-Conquer Algorithm

A A ∗∗ B = A B = A1 1 ∗∗ B B11·10·10nn + (A+ (A1 1 ∗∗ B B2 2 + A+ A2 2 ∗∗ B B11) ·10) ·10n/n/2 2 + A+ A2 2 ∗∗ B B22

The idea is to decrease the number of multiplications from 4 to 3: The idea is to decrease the number of multiplications from 4 to 3:

 (A(A11 + A + A22)) ∗∗ (B (B11 + B + B22) = A) = A1 1 ∗∗ B B11 + (A + (A1 1 ∗∗ B B2 2 + A+ A2 2 ∗∗ B B11) + A) + A2 2 ∗∗ B B2,2,

I.e., (AI.e., (A1 1 ∗∗ B B2 2 + A+ A2 2 ∗∗ B B11) = (A) = (A11 + A + A22)) ∗∗ (B (B11 + B + B22) - A) - A1 1 ∗∗ B B11 - A - A2 2 ∗∗ B B2,2,

which requires only 3 multiplications at the expense of (4-1) extra which requires only 3 multiplications at the expense of (4-1) extra
add/sub.add/sub.

Recurrence for the number of multiplications M(Recurrence for the number of multiplications M(nn):):
 M(M(nn) = 3) = 3MM((nn/2), M(1) = 1/2), M(1) = 1

Solution: M(Solution: M(nn) = 3) = 3log log 22nn = = nnloglog 2233 ≈≈ nn1.585 1.585

4-22Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Example of Large-Integer MultiplicationExample of Large-Integer Multiplication

2135 2135 ∗∗ 4014 4014

4-23Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Strassen’s Matrix MultiplicationStrassen’s Matrix Multiplication

 Strassen observed [1969] that the product of two matrices can Strassen observed [1969] that the product of two matrices can
be computed as follows:be computed as follows:

CC00 00 CC0101 A A0000 A A0101 B B0000 B B0101

 = *= *

CC10 10 CC1111 A A1010 A A1111 B B1010 B B1111

 MM11 + M + M44 - M - M5 5 + M+ M77 M M3 3 + M+ M55

 = =

 MM22 + M + M4 4 MM11 + M + M33 - M - M2 2 + M+ M66

4-24Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Formulas for Strassen’s AlgorithmFormulas for Strassen’s Algorithm

MM11 = (A = (A0000 + A + A1111)) ∗∗ (B (B0000 + + BB1111))

MM22 = (A = (A1010 + A + A1111)) ∗∗ B B0000

MM33 = A = A0000 ∗∗ (B (B0101 - - BB1111))

MM44 = A = A1111 ∗∗ (B (B1010 - - BB0000))

MM55 = (A = (A0000 + A + A0101)) ∗∗ BB1111

MM66 = (A = (A1010 - A - A0000)) ∗∗ (B (B0000 + + BB0101))

MM77 = (A = (A0101 - A - A1111)) ∗∗ (B (B1010 + + BB1111))

4-25Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Analysis of Strassen’s AlgorithmAnalysis of Strassen’s Algorithm

If If nn is not a power of 2, matrices can be padded with zeros. is not a power of 2, matrices can be padded with zeros.

Number of multiplications:Number of multiplications:

 M(M(nn) = 7M() = 7M(nn/2), M(1) = 1/2), M(1) = 1

Solution: M(Solution: M(nn) = 7) = 7log log 22nn = = nnlog log 227 7 ≈≈ nn2.807 2.807 vs. vs. nn3 3 of brute-force alg.of brute-force alg.

Algorithms with better asymptotic efficiency are known but theyAlgorithms with better asymptotic efficiency are known but they
are even more complex. are even more complex.

4-26Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Closest-Pair Problem by Divide-and-ConquerClosest-Pair Problem by Divide-and-Conquer

Step 1 Divide the points given into two subsets SStep 1 Divide the points given into two subsets S11 and S and S22 by a by a

vertical line vertical line xx = = cc so that half the points lie to the left or on so that half the points lie to the left or on
the line and half the points lie to the right or on the line.the line and half the points lie to the right or on the line.

4-27Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Closest Pair by Divide-and-Conquer (cont.)Closest Pair by Divide-and-Conquer (cont.)

Step 2 Find recursively the closest pairs for the left and rightStep 2 Find recursively the closest pairs for the left and right
 subsets. subsets.

Step 3 Set Step 3 Set dd = min{ = min{dd11, , dd22}}

 We can limit our attention to the points in the symmetricWe can limit our attention to the points in the symmetric
 vertical strip of width 2 vertical strip of width 2dd as possible closest pair. Let C as possible closest pair. Let C11

 and C and C22 be the subsets of points in the left subset S be the subsets of points in the left subset S11 and of and of
 the right subset S the right subset S22, respectively, that lie in this vertical, respectively, that lie in this vertical
 strip. The points in C strip. The points in C1 1 and Cand C2 2 are stored in increasing are stored in increasing
 order of their order of their yy coordinates, which is maintained by coordinates, which is maintained by
 merging during the execution of the next step. merging during the execution of the next step.

Step 4 For every point Step 4 For every point PP((xx,,yy) in C) in C11, we inspect points in, we inspect points in
 C C22 that may be closer to that may be closer to PP than than dd. There can be no more. There can be no more
 than 6 such points (because than 6 such points (because dd ≤≤ dd22)!)!

4-28Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Closest Pair by Divide-and-Conquer: Worst CaseClosest Pair by Divide-and-Conquer: Worst Case

The worst case scenario is depicted below:The worst case scenario is depicted below:

4-29Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Efficiency of the Closest-Pair AlgorithmEfficiency of the Closest-Pair Algorithm

Running time of the algorithm is described byRunning time of the algorithm is described by

 T(T(nn) = 2T() = 2T(nn/2) + M(/2) + M(nn), where M(), where M(nn)) ∈∈ O(O(nn))

By the Master Theorem (with By the Master Theorem (with aa = 2, = 2, bb = 2, = 2, dd = 1) = 1)

 T(T(nn)) ∈∈ O(O(nn log log nn))

4-30Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Quickhull Algorithm Quickhull Algorithm

Convex hullConvex hull: smallest convex set that includes given points: smallest convex set that includes given points
 Assume points are sorted by Assume points are sorted by xx-coordinate values-coordinate values

 Identify Identify extreme pointsextreme points PP11 and and PP22 (leftmost and rightmost) (leftmost and rightmost)

 Compute Compute upper hullupper hull recursively: recursively:
• find point find point PPmaxmax that is farthest away from line that is farthest away from line PP11PP22

• compute the upper hull of the points to the left of line compute the upper hull of the points to the left of line PP11PPmaxmax

• compute the upper hull of the points to the left of line compute the upper hull of the points to the left of line PPmaxmaxPP22

 Compute Compute lower hulllower hull in a similar manner in a similar manner

P1

P2

Pmax

4-31Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 4

Efficiency of Quickhull AlgorithmEfficiency of Quickhull Algorithm

 Finding point farthest away from line Finding point farthest away from line PP11PP2 2 can be done in can be done in

linear timelinear time
 Time efficiency: Time efficiency:

• worst case: worst case: ΘΘ((nn22) (as) (as quicksort)quicksort)

• average case: average case: ΘΘ((nn) (under reasonable assumptions about) (under reasonable assumptions about
 distribution of points given) distribution of points given)

 If points are not initially sorted by If points are not initially sorted by xx-coordinate value, this -coordinate value, this
can be accomplished in can be accomplished in O(O(n n log log nn) time) time

 Several Several O(O(n n log log nn)) algorithms for convex hull are knownalgorithms for convex hull are known

