Chapter 4

Divide-and-Conquer

Divide-and-Conquer

The most-well known algorithm design strategy:
2. Divide instance of problem into two or more smaller instances
4. Solve smaller instances recursively
6. Obtain solution to original (larger) instance by combining these solutions

Divide-and-Conquer Technique (cont.)

a problem of size n

$$
\text { subproblem } 1
$$

of size $n / 2$
subproblem 2 of size $n / 2$
a solution to subproblem 1
a solution to subproblem 2
a solution to the original problem

Divide-and-Conquer Examples

Sorting: mergesort and quicksort

Binary tree traversals

Binary search (?)

Multiplication of large integers

Matrix multiplication: Strassen's algorithm

Closest-pair and convex-hull algorithms

General Divide-and-Conquer Recurrence

$I(x)=a I\left((n / t)+f(x)\right.$ where $f(n) \in \Theta\left(x^{4}\right), \quad d \geq 0$

Master Theorem: If $a<b^{d}, \quad T(n) \in \Theta\left(n^{4}\right)$
If $a=b^{d}, \quad T(n) \in \Theta\left(n^{d} \log n\right)$
If $a>b^{d}, \quad I(n) \in \Theta\left(n^{\log _{b} a}\right)$

Note: The same results hold with O instead of Θ.

Examples: $T(n)=4 T(n / 2)+n \Rightarrow T(n) \in ?$

$$
\begin{aligned}
& T(n)=4 T(n / 2)+n^{2} \Rightarrow T(n) \in ? \\
& T(n)=4 T(n / 2)+n^{3} \Rightarrow T(n) \in ?
\end{aligned}
$$

Split array $\mathrm{A}[0 . \ldots n-1]$ in two about equal halves and make copies of each half in arrays B and C
Sort arrays B and C recursively

- Merge sorted arrays B and C into array A as follows:
- Repeat the following until no elements remain in one of the arrays:
- compare the first elements in the remaining umprocessed portions of the arrays
- copy the smaller of the two into A, while incrementing the index indicating the unprocessed portion of that array
- Once all elements in one of the arrays are processed, copy the remaining unprocessed elements from the other array into A.

Pseudocode of Mergesort

ALGORITHM Mergesort(A[0..n-1])

//Sorts array $A[0 . . n-1]$ by recursive mergesort //Input: An array $A[0 . . n-1]$ of orderable elements //Output: Array $A[0 . . n-1]$ sorted in nondecreasing order if $n>1$
copy $A[0 . .\lfloor n / 2\rfloor-1]$ to $B[0 . .\lfloor n / 2\rfloor-1]$
copy $A[\lfloor n / 2\rfloor . . n-1]$ to $C[0 . .\lceil n / 2\rceil-1]$
Mergesort ($B[0 . .\lfloor n / 2\rfloor-1]$)
Mergesort (C[0.. $\lceil n / 2\rceil-1])$
Merge(B, C, A)

Pseudocode of Merge

ALGORITHM $\operatorname{Merge}(B[0 . . p-1], C[0 . . q-1], A[0 . . p+q-1])$
//Merges two sorted arrays into one sorted array
//Input: Arrays $B[0 . . p-1]$ and $C[0 . . q-1]$ both sorted
$/ /$ Output: Sorted array $A[0 . . p+q-1]$ of the elements of B and C
$i \leftarrow 0 ; j \leftarrow 0 ; k \leftarrow 0$
while $i<p$ and $j<q$ do

$$
\begin{aligned}
& \text { if } B[i] \leq C[j] \\
& \qquad A[k] \leftarrow B[i] ; i \leftarrow i+1
\end{aligned}
$$

else $A[k] \leftarrow C[j] ; j \leftarrow j+1$

$$
k \leftarrow k+1
$$

if $i=p$

$$
\text { copy } C[j . . q-1] \text { to } A[k . . p+q-1]
$$

else copy $B[i . . p-1]$ to $A[k . . p+q-1]$

Mergesort Example

Analysis of Mergesort

All cases have same efficiency: $\Theta(n \log n)$

- Number of comparisons in the worst case is close to theoretical minimum for comparison-based sorting:

$$
\left\lceil\log _{2} n!\right\rceil \approx n \log _{2} n-1.44 n
$$

Space requirement: ©(n) (not in-place)

Can be implemented without recursion (bottom-up)

Quicksort

Select a pivot (partitioning element) - here, the first element

- Rearrange the list so that all the elements in the first s positions are smaller than or equal to the pivot and all the elements in the remaining n-s positions are larger than or equal to the pivot (see next slide for an algorithm)

$$
\mathrm{A}[i] \leq p
$$

$$
\mathrm{A}[i] \geqslant p
$$

Exchange the pivot with the last element in the first (i,e, \leq) subarray - the pivot is now in its final position Sort the two subarrays recursively

Partitioning Algorithm

Algorithm Partition(A[l..r])
//Partitions a subarray by using its first element as a pivot
//Input: A subarray $A[l . . r]$ of $A[0 . . n-1]$, defined by its left and right
// indices l and $r(l<r)$
//Output: A partition of $A[l . . r]$, with the split position returned as
// this function's value
$p \leftarrow A[l]$
$i \leftarrow l ; \quad j \leftarrow r+1$
repeat
repeat $i \leftarrow i+1$ until $A[i] \geq p$
repeat $j \leftarrow j-1$ until $A[j]$, p
$\operatorname{swap}(A[i], A[j])$
until $i \geq j$
swap $(A[i], A[j]) \quad / / u n d o$ last swap when $i \geq j$
swap $(A[l], A[j])$
return j

Quicksort Example

$\begin{array}{llllllll}5 & 3 & 1 & 9 & 8 & 2 & 4 & 7\end{array}$

Analysis of Quicksort

- Best case: split in the middle - $\Theta(n \log n)$
- Worst case: sorted array! - ©(n^{2})

Average case: random arrays - $\Theta(n \log n)$

Improvements:

- better pivot selection: median of three partitioning
- switch to insertion sort on small subfiles
- elimination of recursion

These combine to $20-25 \%$ improvement

- Considered the method of choice for internal sorting of large files ($n \geq 10000$)

Binary Search

Very efficient algorithm for searching in sorted array:

$$
\mathbb{K}
$$

VS

$$
A[0] \ldots A[m] \ldots A[n-1]
$$

If $K=A[m]$, stop (successful search); otherwise, continue searching by the same method in $A[0 . m-1]$ if $K<A[m]$ and in $A[m+1 \ldots-1]$ if $\mathbb{K}>A[m]$
$l \leftarrow 0 ; \quad \mu \leftarrow n-1$
while $l \leq r$ do
$m \leftarrow\lfloor(l+r) / 2\rfloor$
if $\mathbb{K}=\Delta[m]$ return m
else if $\mathbb{K}<A[m] r \leftarrow m-1$
else $I \leftarrow m+1$
Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
refurn -1

Analysis of Binary Search

Time efficiency

- worst-case recurrence: $C_{w}(n)=1+C_{w}(\lfloor n / 2\rfloor), C_{w}(1)=1$ solution: $C_{w}(n)=\left\lceil\log _{2}(n+1)\right\rceil$

This is VERY fast: e.g., $\mathrm{C}_{w}\left(10^{6}\right)=20$

Optimal for searching a sorted array
Limitations: must be a sorted array (not linked list)
Bad (degenerate) example of divide-and-conquer

- Has a continuous counterpart called bisection method for solving equations in one unknown $f(x)=0$ (see Sec, 12,4)

Binary Tree Algorithms

Binary tree is a divide-and-conquer ready structure!

Ex. 1: Classic traversals (preorder, inorder, postorder) Algorithm Inoraler(I)
if $I^{\prime} \neq \varnothing$
Inorder ($I_{\text {lefit }}^{\prime}$)
print(root of IT)
Inorder ($I_{\text {righin }}^{\prime}$)

e

Efficiency: ©(n)

Binary Tree Algorithms (cont.)

Ex. 2: Computing the height of a binary tree $\triangle 1$

$$
h(I)=\max \left\{h\left(I_{\mathrm{L}}^{\prime}\right), h\left(I_{\mathrm{R}}^{\prime}\right)\right\}+1 \text { if } T^{\prime} \neq \varnothing \text { and } h(\varnothing)=-1
$$

Efficiency: ©(n)

Multiplication of Large Integers

Consider the problem of multiplying two (large) n-digit integers represented by arrays of their digits such as:
$A=12345678901357986429 \quad B=87654321284820912836$
The grade-school algorithm:

$$
\begin{array}{r}
a_{1} a_{2} \ldots a_{n} \\
b_{1} b_{2} \ldots b_{n} \\
\left(d_{10}\right) a_{11} a_{12} \ldots a_{1 n} \\
\left(a_{20}\right) a_{21} a_{22} \ldots a_{2 n}
\end{array}
$$

$\left(a_{n 0}\right) a_{n 1} a_{n 2} \cdots a_{n n}$

First Divide-and-Conquer Algorithm

A small example: $\mathrm{A} * \mathrm{~B}$ where $\mathrm{A}=2135$ and $\mathrm{B}=4014$
$\mathrm{A}=\left(21 \cdot 10^{2}+35\right), \quad \mathrm{B}=\left(40 \cdot 10^{2}+14\right)$
So, $\mathrm{A} * \mathrm{~B}=\left(21 \cdot 10^{2}+35\right) *\left(40 \cdot 10^{2}+14\right)$

$$
=21 * 40 \cdot 10^{4}+(21 * 14+35 * 40) \cdot 10^{2}+35 * 14
$$

In general, if $\mathrm{A}=\mathrm{A}_{1} \mathrm{~A}_{2}$ and $\mathrm{B}=\mathrm{B}_{1} \mathrm{~B}_{2}$ (where A and B are n-digit,
$\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{2}$ are $n / 2$-digit numbers),
$\mathrm{A}^{*} \cdot \mathrm{~B}=\mathrm{A}_{1} * \mathrm{~B}_{1} \cdot 10^{n}+\left(\mathrm{A}_{1} * \mathrm{~B}_{2}+\mathrm{A}_{2} * \mathrm{~B}_{1}\right) \cdot 10^{n / 2}+\mathrm{A}_{2} * \mathrm{~B}_{2}$

Recurrence for the number of one-digit multiplications $\operatorname{M}(n)$:

$$
\mathbb{M}(n)=4 \mathbb{M}(n / 2), \quad \mathbf{M}(1)=1
$$

Second Divide-and-Conquer Algorithm

A^{*} * $\mathrm{B}=\mathrm{A}_{1}$ * $\mathrm{B}_{1} \cdot 10^{n}+\left(\mathrm{A}_{1}\right.$ 法 $\mathrm{B}_{2}+\mathrm{A}_{2}$ * $\left.\mathrm{B}_{1}\right) \cdot 10^{n / 2}+\mathrm{A}_{2}$ * B_{2}

The idea is to decrease the number of multiplications from 4 to 3:

$$
\left(A_{1}+A_{2}\right) *\left(B_{1}+B_{2}\right)=A_{1} * B_{1}+\left(A_{1} * B_{2}+A_{2} * B_{1}\right)+A_{2} * B_{2},
$$

I.e. $\left(A_{1} * B_{2}+A_{2} * B_{1}\right)=\left(A_{1}+A_{2}\right) *\left(B_{1}+B_{2}\right)-A_{-1} * B_{1}-A_{2} * B_{2}$, which requires only 3 multiplications at the expense of ($4-1$) extra adda/sub.

Recurrence for the number of multiplications $\operatorname{MI}(n)$:

$$
\operatorname{MI}(n)=3 M /(n / 2), \quad M(1)=1
$$

Example of Large-Integer Multiplication

$2135 \div 4014$

Strassen's Matrix Multiplication

Strassen observed [1969] that the product of two matrices can be computed as follows:

$$
\begin{aligned}
& \left.\left(\begin{array}{l|l}
\mathrm{C}_{00} & \mathrm{C}_{01} \\
\hline \mathrm{C}_{10} & \mathrm{C}_{11}
\end{array}\right)=\left(\begin{array}{cc}
\mathrm{A}_{00} & \mathrm{~A}_{01} \\
\hline A_{10} & A_{11}
\end{array}\right) * \begin{array}{ll}
\mathrm{B}_{00} & \mathrm{~B}_{01} \\
\hline & B_{10} \\
B_{11}
\end{array}\right) \\
& \mathbf{M}_{1}+\mathbf{M}_{4}-\mathbf{M}_{5}+\mathbf{M}_{7} \\
& \mathbf{M}_{3}+\mathbf{M}_{5} \\
& = \\
& \mathbf{M}_{2}+\mathbf{M}_{4} \\
& \mathbf{M}_{1}+\mathbf{M}_{3}-\mathbf{M}_{2}+\mathbf{M}_{6}
\end{aligned}
$$

Formulas for Strassen's Algorithm

$M_{1}=\left(\mathbf{A}_{00}+A_{11}\right) *\left(B_{00}+B_{11}\right)$
$M_{2}=\left(A_{10}+A_{11}\right)$ * B_{00}
$M_{3}=A_{00} *\left(B_{01}-B_{11}\right)$
$\mathrm{M}_{4}=\mathrm{A}_{11}$ * * $\left(\mathrm{B}_{10}-\mathrm{B}_{00}\right)$
$\mathbf{M}_{5}=\left(\mathbf{A}_{00}+A_{01}\right) * B_{11}$
$M_{6}=\left(A_{10}-A_{00}\right) *\left(B_{00}+B_{01}\right)$

Analysis of Strassen's Algorithm

If n is not a power of 2 , matrices can be padded with zeros.

Number of multiplications:

$$
\mathrm{M}(n)=7 \mathbb{M}(n / 2), \quad \mathrm{M}(1)=1
$$

Solution: $\mathrm{M}(n)=7^{\log _{2} 2^{n}}=\boldsymbol{n}^{\log 2^{7}} \approx n^{2.807}$ vs, \boldsymbol{n}^{3} of brute-force alg.

Algorithms with better asymptotic efficiency are known but they are even more complex.

Closest-Pair Problem by Divide-and-Conquer

Step 1 Divide the points given into two subsets S_{1} and S_{2} by a vertical line $x=c$ so that half the points lie to the left or on the line and half the points lie to the right or on the line.

Closest Pair by Divide-and-Conquer (cont.)

Step 2 Find recursively the closest pairs for the left and right subsets.

Step $3 \operatorname{Set} d=\min \left\{d_{1}, d d_{2}\right\}$
We can limit our attention to the points in the symmetric vertical strip of width 2d as possible closest pair. Let C_{1} and C_{2} be the subsets of points in the left subset S_{1} and of the right subset S_{23} respectively, that lie in this vertical strip. The points in C_{1} and C_{2} are stored in increasing order of their y coordinates, which is maintained by merging during the exccution of the next step.

Step 4 For every point $P(x, y)$ in C_{1}, we inspect points in C_{2} that may be closer to P than d. There can be no more than 6 such points (because $d \leq d_{2}$)!

Closest Pair by Divide-and-Conquer: Worst Case

The worst case scenario is depicted below:

Efficiency of the Closest-Pair Algorithm

Running time of the algorithm is described by

$$
T(n)=2 T(n / 2)+\mathbb{M}(n) \text {, where } M(n) \in O(n)
$$

By the Master Theorem (with $a=2, b=2, a l=1$)

$$
T(n) \in O(n \log n)
$$

Quickhull Algorithm

Convex hulle smallest convex set that includes given points
Assume points are sorted by x-coordinate values

- Identify extreme points P_{1} and P_{2} (lefimost and rightmost)
- Compute upper hull recursively:
- find point $P_{\text {max }}$ that is farthest away from line $P_{1} P_{2}$
- compute the upper hull of the points to the left of line $P_{1} P_{\max }$
- compute the upper hull of the points to the lefit of line $P_{\max } P_{2}$

Compute lower hull in a similar manner

Efficiency of Quickhull Algorithm

. Finding point farthest away from line $P_{1} P_{2}$ can be done in linear time

- Time efficiency.
- worst case: ©(n^{2}) (as quicksort)
- average case: ©(n) (under reasonable assumptions about distribution of points given)
- If points are not initially sorted by x-coordinate value, this can be accomplished in $\mathrm{O}(n \log n)$ time
- Several $\mathrm{O}(n \log n)$ algorithms for convex hull are known

