Chapter 2

Fundamentals of the Analysis of Algorithm Efficiency

Analysis of algorithms

Issues:

- correctness
- time efficiency
- space efficiency
- optimality

Approaches:

- theoretical analysis
- empirical analysis

lneoreulcal antlysis oi ime efficiency

Time efficiency is analyzed by determining the number of repetitions of the basic operation as a function of imput size

- Busic operation: the operation that contributes most towards the running time of the algorithm
input size

$T(1)) \approx c_{o p} C(1 \Omega)$

running time
execution time
for basic operation

Number of times basic operation is executed

Input size and basic operation examples

Problem	Irput size measure	Busic operation
Searching for key in a list of n items	Number of list's items, i.e. n	Key comparison
MIultiplication of two matrices	Matrix dimensions or total number of elements	Mwo numbers twication of
Checking primality of a given integer n	n 'size = number of digits (in binary representation)	Division
Typical graph problem	\#vertices and/or edges	Visiting a vertex or traversing an edge

Empinical analysis of time efficiency

Select a specific (typical) sample of imputs
: Use physical unit of time (e.g., milliseconds)
or
Count actual number of basic operation's executions

Analyze the empirical data

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

Worst case: $\quad C_{\text {worst }}(n)$-maximum over inputs of sive n

- Best case:
$\mathrm{C}_{\text {best }}(n)$ - minimum over inputs of size n
- Average case: $\mathrm{C}_{\text {avg }}(n)$ - "average" over inputs of size n
- Number of times the basic operation will be executed on typical input
- NOT the average of worst and best case
- Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs

Example: Sequential search

ALGORITHM SequentialSearch (A[0..n-1], K)

//Searches for a given value in a given array by sequential search $/ /$ Input: An array $A[0 . . n-1]$ and a search key K
//Output: The index of the first element of A that matches K
// or -1 if there are no matching elements
$i \leftarrow 0$
while $i<n$ and $A[i] \neq K$ do
$i \leftarrow i+1$
if $i<n$ return i
else return -1
. Worst case

Best case

Types of formulas for basic operation's count

Exact formula

$$
\text { e,g, } \mathrm{C}(n)=n(n-1) / 2
$$

Formula indicating order of growth with specific multiplicative constant

$$
\operatorname{e.g}, \mathrm{C}(n) \approx 0.5 n^{2}
$$

- Formula indicating order of growith with unknown multiplicative constant

$$
\operatorname{eg}, \mathrm{C}(n) \approx c n^{2}
$$

Order of growth

- Most important: Order of growth within a constant multiple as $n \rightarrow \infty$

Example:

- How much faster will algorithm run on computer that is twice as fast?
- How much longer does it take to solve problem of double imput size?

Values of some important functions as $n \rightarrow \infty$

n	$\log _{2} n$	n	$n \log _{2} n$	n^{2}	n^{3}	2^{n}	$n!$
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^{6}$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^{2}$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^{4}$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^{5}$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^{6}$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^{7}$	10^{12}	10^{18}		

Table 2.1 Values (some approximate) of several functions important for analysis of algorithms

Asymptotic order of growth

A way of comparing functions that ignores constant factors and small input sizes
$O(g(x))$: class of functions $f(x)$ that grow no faster than $g(x)$
$\Theta(g(n))$: class of functions $f(n)$ that grow at same rate as $g(n)$
$\Omega(g(n))$: class of functions $f(n)$ that grow at least as fast as $g(x)$

Big-oh

Figure 2.1 Big-oh notation: $t(n) \in O(g(n))$

Big-omega

Fig. 2.2 Big-omega notation: $t(n) \in \Omega(g(n))$

Big-theta

Figure 2.3 Big-theta notation: $t(n) \in \Theta(g(n))$

Establishing order of growth using the definition

Definition: $f(x)$ is in $O(g(x))$ if order of growth of $f(x) \leq$ order of growth of $g(x)$ (within constant multiple),
i,e, there exist positive constant c and non-negative integer n_{0} such that

$$
f(n) \leq c g(n) \text { for every } n \geq n_{0}
$$

Examples:
$10 n$ is $O\left(n^{2}\right)$
$5 n+20$ is $O(n)$

Some properties of asymptotic order of growth

$f(x) \in O(f(x))$
$f(n) \in O(g(n))$ iff $g(n) \in \Omega(f(n))$

If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$

Note similarity with $a \leq b$

If $f_{1}(n) \in O\left(g_{1}(n)\right)$ and $f_{2}(n) \in O\left(g_{2}(n)\right)$, then

$$
f_{1}(n)+f_{2}^{\prime}(n) \in \mathrm{O}\left(\max \left\{g_{1}(n), g_{2}(n)\right\}\right)
$$

Establishing order of growth using limits

0 order of growth of $T(n)$ < order of growth of $g(n)$
$\lim I((n)) / g(x)=\{c>0$ order of growth of $T(n)=$ order of growth of $g(x)$ $\Omega \rightarrow \infty$
$\infty \quad$ order of growth of $I(n)>$ order of growth of $g(n)$

Examples:

- $10 n$

VS.
n^{2}

- $n(n+1) / 2 \quad$ vs. $\quad n^{2}$

L'Hôpital's rule and Stirling's formula

L'Hôpital's rule: If $\operatorname{li} m_{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} g(n)=\infty$ and the derivatives $f^{\prime \prime}, g^{\prime}$ exist, then

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime \prime}(n)}{g^{\prime}(n)}
$$

Example: $\log n$ vs, n

Stirling's formula; $n!\approx(2 \pi n)^{1 / 2}(n / \mathrm{e})^{n}$
Example: 2^{π} VS, n !

Orders of growth of some important functions

- All logarithmic functions $\log _{a} n$ belong to the same class $\Theta(\log n)$ no matter what the logarithm's base $a>1$ is

All polynomials of the same degree k belong to the same class: $a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{0} \in \Theta\left(n^{k}\right)$

Exponential functions a^{n} have different orders of growth for diffierent a 's
order $\log \boldsymbol{n}<\operatorname{order} \boldsymbol{n}^{\alpha}(\alpha>0)<\operatorname{order} \boldsymbol{a}^{n}<\operatorname{order} \boldsymbol{n}!<$ order \boldsymbol{n}^{n}

Basic asymptotic efficiency classes

1	constant
$\log n$	$\operatorname{logarithmic}$
n	linear
$n \log n$	$n-\log -n$
n^{2}	quadratic
n^{3}	cubic
2^{n}	exponential
$n!$	factorial

Time efficiency of nonrecursive algorithms

General Plan for Analysis

Decide on parameter n indicating input size
Identify algorithm's busic operution

- Determine worst, averuge, and best cases for input of sive n
- Set up a sum for the number of times the basic operation is executed

Simplify the sum using standard formulas and rules (see Appendix A)

Useful summation formulas and rules

$\sum_{l \leq i \leq u} 1=1+1+\ldots+1=u-l+1$
In particular, $\Sigma_{\mid \leq i \leq u \leq} 1=n-1+1=n \in \Theta(n)$
$\Sigma_{1 \leq i \leq n} i=1+2+\ldots+n=n(n+1) / 2 \approx n^{2} / 2 \in \Theta\left(n^{2}\right)$
$\Sigma_{1 \leq i \leq n} i^{2}=1^{2}+2^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6 \approx n^{3} / 3 \in \Theta\left(n^{3}\right)$
$\Sigma_{0 \leq i \leq n} a^{i}=1+a+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1)$ for any $a \neq 1$
In particular, $\Sigma_{0 \leq i \leq n} 2^{i}=2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1 \in \Theta\left(2^{n}\right)$
$\Sigma\left(u_{i} \pm b_{i}\right)=\Sigma a_{i} \pm \sum b_{i} \quad \sum c a_{i}=c \sum a_{i} \quad \sum_{l \leq \leq \leq \leq u} a_{i}=\sum_{l \leq i \leq m} a_{i}+\Sigma_{m+1 \leq i \leq u} a_{i}$

Example 1: Maximum element

ALGORITHM MaxElement(A[0..n-1])

//Determines the value of the largest element in a given array //Input: An array $A[0 . . n-1]$ of real numbers //Output: The value of the largest element in A maxval $\leftarrow A[0]$ for $i \leftarrow 1$ to $n-1$ do if $A[i]>$ maxval maxval $\leftarrow A[i]$ return maxval

Example 2: Element uniqueness problem

ALGORITHM UniqueElements (A[0..n-1])

//Determines whether all the elements in a given array are distinct
//Input: An array $A[0 . . n-1]$
//Output: Returns "true" if all the elements in A are distinct
// and "false" otherwise
for $i \leftarrow 0$ to $n-2$ do

$$
\text { for } j \leftarrow i+1 \text { to } n-1 \text { do }
$$

if $A[i]=A[j]$ return false
return true

Example 3: Matrix multiplication

ALGORITHM MatrixMultiplication(A[0..n-1, $0 . . n-1], B[0 . . n-1,0 . . n-1])$
//Multiplies two n-by- n matrices by the definition-based algorithm
//Input: Two n-by- n matrices A and B
//Output: Matrix $C=A B$
for $i \leftarrow 0$ to $n-1$ do
for $j \leftarrow 0$ to $n-1$ do
$C[i, j] \leftarrow 0.0$
for $k \leftarrow 0$ to $n-1$ do
$C[i, j] \leftarrow C[i, j]+A[i, k] * B[k, j]$
return C

Example 4: Gaussian elimination

Algorithm GaussianElimination $(A[0 . \ldots-1,0 . n])$
//Implements Gaussian elimination of an n-by-($n+1$) matrix A
for $i \leftarrow 0$ to $n-2$ do
for $j \leftarrow i+1$ to $n-1$ do
for $k \leftarrow i$ to n do

$$
A[j, k] \leftarrow A[j, k]-A[i, k] * A[j, i] / A[i, i]
$$

Find the efficiency class and a constant factor improvement.

Example 5: Counting binary digits

ALGORITHM Binary(n)

//Input: A positive decimal integer n
//Output: The number of binary digits in n 's binary representation count $\leftarrow 1$ while $n>1$ do

$$
\begin{aligned}
& \text { count } \leftarrow \text { count }+1 \\
& n \leftarrow\lfloor n / 2\rfloor
\end{aligned}
$$

return count

It cannot be investigated the way the previous examples are.

Plan for Analysis of Recursive Algorithms

Decide on a parameter indicating an input's size.
Identify the algorithm's basic operation.

- Check whether the number of times the basic op, is executed may vary on different inputs of the same size. (If it may, the worst, average, and best cases must be investigated separately.)

Set up a recurrence relation with an appropriate initial condition expressing the number of times the basic op, is executed.

- Solve the recurrence (or, at the very least, establish its solution's order of growth) by backward substitutions or another method.

Example 1: Recursive evaluation of n !

Definition: $n!=1 * 2 * \ldots *(n-1) * n$ for $n \geq 1$ and $0!=1$

Recursive definition of $n!: F(n)=F(n-1) * n$ for $n \geq 1$ and $F(0)=1$

ALGORITHM $F(n)$

//Computes n ! recursively
//Input: A nonnegative integer n
//Output: The value of n !
if $n=0$ return 1
else return $F(n-1) * n$
Size:
Basic operation:
Recurrence relation:

Solving the recurrence for $\mathbb{M}(x)$

$M(n)=M((n-1)+1, M(0)=0$

Example 2: The Tower of Hanoi Purzle

Recurrence for number of moves:

Solving recurrence for number of moves

$\operatorname{MI}(n)=2 \operatorname{MI}(n-1)+1, \operatorname{MI}(1)=1$

Tree of calls for the Tower of Hanoi Puzzle

Example 3: Counting \#bits

ALGORITHM $\operatorname{BinRec}(n)$

//Input: A positive decimal integer n
//Output: The number of binary digits in n 's binary representation if $n=1$ return 1 else return $\operatorname{BinRec}(\lfloor n / 2\rfloor)+1$

Filbonacci numbers

The Fibonacci numbers:

$$
0,1,1,2,3,5,8,13,21, \ldots
$$

The Fibonacci recurrence:

$$
\begin{aligned}
& F(n)=F(n-1)+E(n-2) \\
& F(0)=0 \\
& F(1)=1
\end{aligned}
$$

General $2^{\text {nd }}$ order linear homogeneous recurrence with constant coefficients:

$$
a X(n)+b X(n-1)+c \mathbb{X}(n-2)=0
$$

Solving $a X(n)+b X(n-1)+c \mathbb{X}(n-2)=0$

- Set up the characteristic equation (quadratic)

$$
a r^{2}+b r+c=0
$$

Solve to obtain roots r_{1} and r_{2}

- General solution to the recurrence
if r_{1} and r_{2} are two distinct real roots: $X(n)=\alpha r_{1}^{n}+\beta r_{2}^{n}$
if $r_{1}=r_{2}=r$ are two equal real roots: $\quad X(n)=\alpha r^{n}+\beta n r^{n}$

Particular solution can be found by using initial condifions

numbers

$E(n)=E(n-1)+E(n-2)$ or $E(n)-E(n-1)-E(n-2)=0$

Characteristic equation:

Roots of the characteristic equation:

General solution to the recurrence:

Particular solution for $E(0)=0, E(1)=1$:

Computing Fibonacci numbers

1. Definition-based recursive algorithm
2. Nonrecursive definition-based algorithm
3. Explicit formula algorithm
4. Logarithmic algorithm based on formula:

$$
\begin{aligned}
& F(n-1) \\
& F(n)
\end{aligned} \quad F(n+1)=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n}
$$

for $n \geq 1$, assuming an efficient way of computing matrix powers.

