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Analysis of algorithmsAnalysis of algorithms

 Issues:Issues:
• correctnesscorrectness

• time efficiencytime efficiency

• space efficiencyspace efficiency

• optimalityoptimality

 Approaches:Approaches:  

• theoretical analysistheoretical analysis

• empirical analysisempirical analysis
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Theoretical analysis of time Theoretical analysis of time 
efficiencyefficiency

Time efficiency is analyzed by determining the number of Time efficiency is analyzed by determining the number of 
repetitions of the repetitions of the basic operationbasic operation as a function of  as a function of input sizeinput size

 Basic operationBasic operation: the operation that contributes most : the operation that contributes most 
towards the running time of the algorithmtowards the running time of the algorithm

                                              TT((nn) ) ≈≈  ccopopCC((nn))
running time execution time

for basic operation

Number of times 
basic operation is 

executed

input size
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Input size and basic operation examplesInput size and basic operation examples

Basic operationBasic operationInput size measureInput size measureProblemProblem

Visiting a vertex or Visiting a vertex or 
traversing an edgetraversing an edge

#vertices and/or edges#vertices and/or edges
Typical graph Typical graph 
problemproblem

DivisionDivision
n’n’size = number of digits size = number of digits 
(in binary (in binary 
representation)representation)

Checking primality of Checking primality of 
a given integer a given integer nn

Multiplication of Multiplication of 
two numberstwo numbers

Matrix dimensions or Matrix dimensions or 
total number of elementstotal number of elements

Multiplication of two Multiplication of two 
matricesmatrices

Key comparisonKey comparison
Number of list’s items,  Number of list’s items,  
i.e. i.e. nn

Searching for key in a Searching for key in a 
list of list of nn items items
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Empirical analysis of time efficiencyEmpirical analysis of time efficiency

 Select a specific (typical) sample of inputsSelect a specific (typical) sample of inputs

 Use physical unit of time (e.g.,  milliseconds)Use physical unit of time (e.g.,  milliseconds)

                oror

        Count actual number of basic operation’s executionsCount actual number of basic operation’s executions

 Analyze the empirical dataAnalyze the empirical data
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Best-case, average-case, worst-caseBest-case, average-case, worst-case

For some algorithms efficiency depends on form of input:For some algorithms efficiency depends on form of input:

 Worst case:    CWorst case:    Cworstworst((nn) – maximum over inputs of size ) – maximum over inputs of size nn

 Best case:        CBest case:        Cbestbest((nn) –  minimum over inputs of size ) –  minimum over inputs of size nn

 Average case:  CAverage case:  Cavgavg((nn) – “average” over inputs of size ) – “average” over inputs of size nn

• Number of times the basic operation will be executed on typical  Number of times the basic operation will be executed on typical  
inputinput

• NOT the average of worst and best caseNOT the average of worst and best case

• Expected number of basic operations considered as a random Expected number of basic operations considered as a random 
variable under some assumption about the probability distribution variable under some assumption about the probability distribution 
of all possible inputsof all possible inputs
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Example: Sequential searchExample: Sequential search

 Worst caseWorst case

 Best caseBest case

 Average caseAverage case
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Types of formulas for basic operation’s countTypes of formulas for basic operation’s count

 Exact formulaExact formula

                        e.g., C(e.g., C(nn) = ) = nn((nn-1)/2-1)/2

 Formula indicating order of growth with specific Formula indicating order of growth with specific 
multiplicative constantmultiplicative constant

                        e.g., C(e.g., C(nn) ) ≈≈ 0.5  0.5 nn22

 Formula indicating order of growth with unknown Formula indicating order of growth with unknown 
multiplicative constantmultiplicative constant

                        e.g., C(e.g., C(nn) ) ≈≈  cncn22
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Order of growth Order of growth 

 Most important: Order of growth within a constant multiple Most important: Order of growth within a constant multiple 
as as nn→∞→∞

 Example:Example:

• How much faster will algorithm run on computer that is How much faster will algorithm run on computer that is 
twice as fast?twice as fast?

• How much longer does it take to solve problem of double How much longer does it take to solve problem of double 
input size?input size?
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Values of some important functions as Values of some important functions as n n →→  ∞∞
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Asymptotic order of growthAsymptotic order of growth

A way of comparing functions that ignores constant factors and A way of comparing functions that ignores constant factors and 
small input sizessmall input sizes

 O(O(gg((nn)): class of functions )): class of functions ff((nn) that grow ) that grow no fasterno faster than  than gg((nn))

 ΘΘ((gg((nn)): class of functions )): class of functions ff((nn) that grow ) that grow at same rateat same rate as  as gg((nn))

 ΩΩ((gg((nn)): class of functions )): class of functions ff((nn) that grow ) that grow at least as fastat least as fast as  as gg((nn))
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Big-ohBig-oh
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Big-omegaBig-omega
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Big-thetaBig-theta



2-15Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Establishing order of growth using the definitionEstablishing order of growth using the definition

Definition:Definition: f f((nn) is in O() is in O(gg((nn)) if order of growth of  )) if order of growth of  ff((nn) ) ≤≤ order   order  
of growth of of growth of gg((nn) (within constant multiple),) (within constant multiple),
i.e., there exist positive constant i.e., there exist positive constant cc and non-negative integer  and non-negative integer 
nn00 such that such that

                                ff((nn) ) ≤≤  c gc g((nn) for every ) for every nn  ≥≥  nn0 0 

Examples:Examples:
   1010nn is O( is O(nn22))

 55nn+20 is O(+20 is O(nn))
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Some properties of asymptotic order of growthSome properties of asymptotic order of growth

 ff((nn) ) ∈∈ O( O(ff((nn))))

 ff((nn) ) ∈∈ O( O(gg((nn)) iff )) iff gg((nn) ) ∈Ω∈Ω((ff(n)) (n)) 

 If If ff  ((nn) ) ∈∈ O( O(gg  ((nn)) and )) and gg((nn) ) ∈∈ O( O(hh((nn)) , then)) , then f f((nn) ) ∈∈ O( O(hh((nn)) )) 

Note similarity with Note similarity with a a ≤≤  bb

 If If ff11((nn) ) ∈∈ O( O(gg11((nn)) and )) and ff22((nn) ) ∈∈ O( O(gg22((nn)) , then)) , then

                                  ff11((nn) + ) + ff22((nn) ) ∈∈ O(max{ O(max{gg11((nn), ), gg22((nn)}) )}) 
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Establishing order of growth using limitsEstablishing order of growth using limits

limlim   TT((nn)/)/gg((nn) = ) = 

        00    order of growth of TT((n)n)  <  order of growth of gg((nn)) 

c c > 0> 0  order of growth of TT((n)n) = order of growth of gg((nn)) 

 ∞ ∞    order of growth of TT((n)n) >  order of growth of gg((nn)) 

Examples:Examples:
• 1010nn                vs.                             vs.             nn22 

• nn((nn+1)/2        vs.             +1)/2        vs.             nn22 

nn→∞→∞
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L’Hôpital’s rule and Stirling’s formulaL’Hôpital’s rule and Stirling’s formula

L’Hôpital’s rule:  If L’Hôpital’s rule:  If limlimnn→∞→∞   ff((nn) = ) = limlimnn→∞→∞   g(ng(n) = ) = ∞∞  and   and 

                                                              the derivatives the derivatives ff´, ´, gg´ exist, then´ exist, then

Stirling’s formula:  Stirling’s formula:  nn! ! ≈≈ (2 (2ππnn))1/2 1/2 ((nn/e)/e)nn

    

ff((nn))
gg((nn))

limlim
nn→∞→∞

= 
f f ´(´(nn))
g g ´(´(nn))

limlim
nn→∞→∞

Example:  log Example:  log nn  vs.   vs. nn

Example:  2Example:  2nn vs.  vs. nn!!
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Orders of growth of some important functionsOrders of growth of some important functions

 All logarithmic functions logAll logarithmic functions loga a nn belong to the same classbelong to the same class  
ΘΘ(log (log nn)) no matter what the logarithm’s base no matter what the logarithm’s base a a > 1 is> 1 is

 All polynomials of the same degree All polynomials of the same degree k k belong to the same class: belong to the same class: 
aakknnkk +  + aakk-1-1nnkk-1-1 + … +  + … + aa0 0 ∈∈  ΘΘ((nnkk) ) 

 Exponential functions Exponential functions aan n have different orders of growth for have different orders of growth for 
different different aa’s’s

 order order log log n  < n  < order order nnαα    ((αα>0)  < order >0)  < order aann  < order   < order nn! < order ! < order nnnn
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Basic asymptotic efficiency classesBasic asymptotic efficiency classes

factorialfactorialnn!!

exponentialexponential22nn

cubiccubicnn33

quadraticquadraticnn22

n-n-loglog-n-nn n log log nn

linearlinearnn

logarithmiclogarithmiclog log nn

constantconstant11
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Time efficiency of nonrecursive algorithmsTime efficiency of nonrecursive algorithms

General Plan for AnalysisGeneral Plan for Analysis
  

 Decide on parameter Decide on parameter nn indicating  indicating input sizeinput size

 Identify algorithm’s Identify algorithm’s basic operationbasic operation

 Determine Determine worstworst, , averageaverage, and , and bestbest cases for input of size  cases for input of size nn

 Set up a sum for the number of times the basic operation is Set up a sum for the number of times the basic operation is 
executedexecuted

 Simplify the sum using standard formulas and rules (see Simplify the sum using standard formulas and rules (see 
Appendix A)Appendix A)
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Useful summation formulas and rulesUseful summation formulas and rules

ΣΣll≤≤ii≤≤uu1 = 1+1+…+1 = 1 = 1+1+…+1 = u u - - l l + 1+ 1

        In particular, In particular, ΣΣll≤≤ii≤≤uu1 = 1 = n n - 1 + 1 = - 1 + 1 = n n ∈∈  ΘΘ((nn) ) 

ΣΣ11≤≤ii≤≤nn   ii  = 1+2+…+ = 1+2+…+nn =  = nn((nn+1)/2 +1)/2 ≈≈    nn22/2 /2 ∈∈  ΘΘ((nn22) ) 

ΣΣ11≤≤ii≤≤nn   ii22 = 1 = 122+2+222+…++…+nn22 =  = nn((nn+1)(2+1)(2nn+1)/6 +1)/6 ≈≈  nn33/3 /3 ∈∈  ΘΘ((nn33))  

ΣΣ00≤≤ii≤≤nn   aaii    = 1 = 1  + + a a   +…+ +…+ aann    = ( = (aann+1 +1 - 1)/(- 1)/(a a - 1)  for any - 1)  for any a a ≠≠ 1 1

                  In particular, In particular, ΣΣ00≤≤ii≤≤nn   22ii    = 2 = 20 0 + 2+ 21 1 +…+ 2+…+ 2nn    = 2 = 2nn+1+1 - 1  - 1 ∈∈  ΘΘ(2(2nn   ))  

ΣΣ((aaii   ±±  bbi i ) = ) = ΣΣaaii   ±±  ΣΣbbi         i         ΣΣcacaii    =  = ccΣΣaaii               ΣΣll≤≤ii≤≤uuaaii    =  = ΣΣll≤≤ii≤≤mm aaii   + + ΣΣmm +1+1≤≤ii≤≤uuaaii   
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Example 1: Maximum elementExample 1: Maximum element
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Example 2: Element uniqueness problemExample 2: Element uniqueness problem



2-25Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 3: Matrix multiplicationExample 3: Matrix multiplication
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Example 4:  Gaussian eliminationExample 4:  Gaussian elimination

AlgorithmAlgorithm  GaussianEliminationGaussianElimination((AA[0..[0..nn--1,0..1,0..nn])])

//Implements Gaussian elimination of an //Implements Gaussian elimination of an n-n-byby--((nn+1) matrix+1) matrix  AA

forfor  ii  ←←    00 to to  n n --  22 do do

            for for jj  ←←  i   i + 1+ 1 to  to n n -- 1 1 do  do 

                        forfor  kk  ←←  i  i to to  n n dodo

                                  AA[[jj,,kk] ] ←← A A[[jj,,kk] ] --  AA[[ii,,kk] ] ∗∗  AA[[jj,,ii] / ] / AA[[ii,,ii]]

Find the efficiency class and a constant factor improvement.Find the efficiency class and a constant factor improvement.
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Example 5: Counting binary digits  Example 5: Counting binary digits  

It cannot be investigated the way the previous examples are.It cannot be investigated the way the previous examples are.  
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Plan for Analysis of Recursive AlgorithmsPlan for Analysis of Recursive Algorithms

 Decide on  a parameter indicating an input’s size.Decide on  a parameter indicating an input’s size.

 Identify the algorithm’s basic operation. Identify the algorithm’s basic operation. 

 Check whether the number of times the basic op. is executed Check whether the number of times the basic op. is executed 
may vary on different inputs of the same size.  (If it may, the may vary on different inputs of the same size.  (If it may, the 
worst, average, and best cases must be investigated worst, average, and best cases must be investigated 
separately.)separately.)

 Set up a recurrence relation with an appropriate initial Set up a recurrence relation with an appropriate initial 
condition expressing the number of times the basic op. is condition expressing the number of times the basic op. is 
executed.executed.

 Solve the recurrence (or, at the very least, establish its Solve the recurrence (or, at the very least, establish its 
solution’s order of growth) by backward substitutions or solution’s order of growth) by backward substitutions or 
another method.another method.
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Example 1: Recursive evaluation of Example 1: Recursive evaluation of nn!!

Definition:Definition: n  n ! = 1 ! = 1 ∗∗ 2  2 ∗∗ …  … ∗∗((n-n-1) 1) ∗∗  nn  for   for n n ≥≥  1  and  0! = 11  and  0! = 1

Recursive definition of Recursive definition of nn!:  !:  FF((nn) = ) = FF((n-n-1) 1) ∗∗  nn  for   for n n ≥≥  1  and  1  and  
                                                                                              FF((0) = 10) = 1

Size:Size:
Basic operation:Basic operation:
Recurrence relation:Recurrence relation:
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Solving the recurrence for M(Solving the recurrence for M(nn))

M(M(nn) = M() = M(nn-1) + 1,  M(0) = 0-1) + 1,  M(0) = 0
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Example 2: The Tower of Hanoi PuzzleExample 2: The Tower of Hanoi Puzzle

1

2

3

Recurrence for number of moves:Recurrence for number of moves: 
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Solving recurrence for number of movesSolving recurrence for number of moves

M(M(nn) = 2M() = 2M(nn-1) + 1,  M(1) = 1-1) + 1,  M(1) = 1
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Tree of calls for the Tower of Hanoi PuzzleTree of calls for the Tower of Hanoi Puzzle

       n

n-1 n-1

n-2 n-2 n-2 n-2

1 1

... ... ...
2

1 1

2

1 1

2

1 1

2
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Example 3: Counting #bitsExample 3: Counting #bits
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Fibonacci numbersFibonacci numbers

The Fibonacci numbers:The Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, … 0, 1, 1, 2, 3, 5, 8, 13, 21, … 

The Fibonacci recurrence:The Fibonacci recurrence:

F(F(nn) = F() = F(nn-1) + F(-1) + F(nn-2) -2) 

F(0) = 0   F(0) = 0   

F(1) = 1F(1) = 1

General 2General 2ndnd order linear homogeneous recurrence with  order linear homogeneous recurrence with 

constant coefficients:constant coefficients:

                                    aaX(X(nn) + ) + bbX(X(nn-1) + -1) + ccXX(n(n-2) -2) == 0 0
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Solving   Solving   aaX(X(nn) + ) + bbX(X(nn-1) + -1) + ccX(X(nn-2) -2) == 0 0

 Set up the characteristic equation (quadratic)Set up the characteristic equation (quadratic)

  arar22 +  + brbr +  + cc  == 0 0

 Solve to obtain roots Solve to obtain roots rr11 and  and rr22

 General solution to the recurrenceGeneral solution to the recurrence

if if rr1 1 and and   rr2 2  are two distinct real roots:  X( are two distinct real roots:  X(nn) = ) = ααrr11
n n + + ββrr22

nn

if if rr1 1 ==   rr2 2 = = rr are two equal real roots:      X( are two equal real roots:      X(nn) = ) = ααrrn n + + ββnrnr  
nn

 Particular solution can be found by using initial conditionsParticular solution can be found by using initial conditions
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Application to the Fibonacci Application to the Fibonacci 
numbersnumbers

F(F(nn) = F() = F(nn-1) + F(-1) + F(nn-2)  or  F(-2)  or  F(nn) - F() - F(nn-1) - F(-1) - F(nn-2) = 0-2) = 0

Characteristic equation:Characteristic equation:
  

Roots of the characteristic equation:Roots of the characteristic equation:

General solution to the recurrence:General solution to the recurrence:

Particular solution for F(0) =0, F(1)=1:Particular solution for F(0) =0, F(1)=1:
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Computing Fibonacci numbersComputing Fibonacci numbers

1.1. Definition-based recursive algorithmDefinition-based recursive algorithm

3.3. Nonrecursive definition-based algorithmNonrecursive definition-based algorithm

5.5. Explicit formula algorithmExplicit formula algorithm

7.7. Logarithmic algorithm based on formula:Logarithmic algorithm based on formula:

FF((nn-1)-1)    F    F((nn))

FF((nn))   F   F((nn+1)+1)

0   10   1

1    11    1
==

nn

for for nn≥≥1,1, assuming an efficient way of computing matrix  assuming an efficient way of computing matrix 
powers.powers.


